Effect of Pore Characteristics of Biomass-Derived Activated Carbon for Automobile Canisters via Chemical Stabilization Method on Butane Adsorption Characteristics
In this study, kenaf-derived activated carbons (AK-AC) was prepared for automobile canisters via chemical stabilization and physical activation methods. The thermogravimetric analysis and differential thermogravimetry revealed a crystallite change in the kenaf with chemical stabilization. The AK-AC...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Technologies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7080/13/3/89 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this study, kenaf-derived activated carbons (AK-AC) was prepared for automobile canisters via chemical stabilization and physical activation methods. The thermogravimetric analysis and differential thermogravimetry revealed a crystallite change in the kenaf with chemical stabilization. The AK-AC texture properties were studied using the Brunauer–Emmett–Teller, Dubinin–Radushkevitch, and non-local density functional theory equations, with N<sub>2</sub>/77K isotherm adsorption–desorption curves. The AK-AC nanocrystallite characteristics were observed through X-ray diffraction and Raman spectroscopy. The AK-AC butane adsorption characteristics were analyzed via breakthrough curves and compared with those of commercial coconut-derived activated carbon (Coconut AC). As the activation time increased, the specific surface area and mesopore volume ratio of the AK-AC increased to 1080–1940 m<sup>2</sup>/g and 10.6–50.0%, respectively. The AK-AC also exhibited better mesoporous pore characteristics than the Coconut AC. The AK-AC butane adsorption capacity increased from 0.31 to 0.79 g/g. In particular, the AK-AC had an approximately 50% improved butane adsorption capacity compared to the Coconut AC. In addition, the butane adsorption characteristics of the AK-AC were determined using the mesopore volume, with a diameter of 3.0–4.0 nm. The results suggest that AK-AC may be proposed as an adsorbent to improve evaporative emissions from automotive canisters in the future. |
|---|---|
| ISSN: | 2227-7080 |