Pectin‐decorated selenium nanoparticles as a nanocarrier of curcumin to achieve enhanced physicochemical and biological properties

In this study, the authors developed pectin‐stabilised selenium nanoparticles (pectin‐SeNPs) for curcumin (Cur) encapsulation and evaluated their physicochemical properties and biological activities. Results showed that pectin‐SeNPs and Cur‐loaded pectin‐SeNPs (pectin‐SeNPs@Cur) exhibited monodisper...

Full description

Saved in:
Bibliographic Details
Main Authors: Yan Wu, Hong Liu, Zhihua Li, Dongye Huang, Lizheng Nong, Zhengxing Ning, Zhizhong Hu, Chunping Xu, Jing‐Kun Yan
Format: Article
Language:English
Published: Wiley 2019-10-01
Series:IET Nanobiotechnology
Subjects:
Online Access:https://doi.org/10.1049/iet-nbt.2019.0144
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, the authors developed pectin‐stabilised selenium nanoparticles (pectin‐SeNPs) for curcumin (Cur) encapsulation and evaluated their physicochemical properties and biological activities. Results showed that pectin‐SeNPs and Cur‐loaded pectin‐SeNPs (pectin‐SeNPs@Cur) exhibited monodisperse and homogeneous spherical structures in aqueous solutions with mean particle sizes of ∼61 and ∼119 nm, respectively. Cur was successfully encapsulated into pectin‐SeNPs through hydrogen bonding interactions with an encapsulation efficiency of ∼60.6%, a loading content of ∼7.4%, and a pH‐dependent and controlled drug release in vitro. After encapsulation was completed, pectin‐SeNPs@Cur showed enhanced water solubility (∼500‐fold), dispersibility, and storage stability compared with those of free Cur. Moreover, pectin‐SeNPs@Cur possessed significant free radical scavenging ability and antioxidant capacity in vitro, which were stronger than those of pectin‐SeNPs. Antitumour activity assay in vitro demonstrated that pectin‐SeNPs@Cur could inhibit the growth of HepG2 cells in a concentration‐dependent manner, and the nanocarrier pectin‐SeNPs exhibited a low cytotoxic activity against HepG2 cells. Therefore, the results suggested that pectin‐SeNPs could function as effective nanovectors for the enhancement of the water solubility, stability, and in vitro bioactivities of hydrophobic Cur.
ISSN:1751-8741
1751-875X