Mathematical model linking telomeres to senescence in Saccharomyces cerevisiae reveals cell lineage versus population dynamics

Abstract Telomere shortening ultimately causes replicative senescence. However, identifying the mechanisms driving replicative senescence in cell populations is challenging due to the heterogeneity of telomere lengths and the asynchrony of senescence onset. Here, we present a mathematical model of t...

Full description

Saved in:
Bibliographic Details
Main Authors: Anaïs Rat, Veronica Martinez Fernandez, Marie Doumic, Maria Teresa Teixeira, Zhou Xu
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-56196-z
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832585553308024832
author Anaïs Rat
Veronica Martinez Fernandez
Marie Doumic
Maria Teresa Teixeira
Zhou Xu
author_facet Anaïs Rat
Veronica Martinez Fernandez
Marie Doumic
Maria Teresa Teixeira
Zhou Xu
author_sort Anaïs Rat
collection DOAJ
description Abstract Telomere shortening ultimately causes replicative senescence. However, identifying the mechanisms driving replicative senescence in cell populations is challenging due to the heterogeneity of telomere lengths and the asynchrony of senescence onset. Here, we present a mathematical model of telomere shortening and replicative senescence in Saccharomyces cerevisiae which is quantitatively calibrated and validated using data of telomerase-deficient single cells. Simulations of yeast populations, where cells with varying proliferation capacities compete against each other, show that the distribution of telomere lengths of the initial population shapes population growth, especially through the distribution of cells’ shortest telomere lengths. We also quantified how factors influencing cell viability independently of telomeres can impact senescence rates. Overall, we demonstrate a temporal evolution in the composition of senescent cell populations—from a state directly linked to critically short telomeres to a state where senescence onset becomes stochastic. This population structure may promote genome instability and facilitate senescence escape.
format Article
id doaj-art-2993c42889a749058452ea08951c145b
institution Kabale University
issn 2041-1723
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-2993c42889a749058452ea08951c145b2025-01-26T12:42:03ZengNature PortfolioNature Communications2041-17232025-01-0116111310.1038/s41467-025-56196-zMathematical model linking telomeres to senescence in Saccharomyces cerevisiae reveals cell lineage versus population dynamicsAnaïs Rat0Veronica Martinez Fernandez1Marie Doumic2Maria Teresa Teixeira3Zhou Xu4Aix Marseille Univ, CNRS, I2M, Centrale MarseilleSorbonne Université, CNRS, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, LBMCESorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis Lions UMR7598Sorbonne Université, CNRS, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, LBMCESorbonne Université, CNRS, Laboratory of Computational and Quantitative Biology, LCQBAbstract Telomere shortening ultimately causes replicative senescence. However, identifying the mechanisms driving replicative senescence in cell populations is challenging due to the heterogeneity of telomere lengths and the asynchrony of senescence onset. Here, we present a mathematical model of telomere shortening and replicative senescence in Saccharomyces cerevisiae which is quantitatively calibrated and validated using data of telomerase-deficient single cells. Simulations of yeast populations, where cells with varying proliferation capacities compete against each other, show that the distribution of telomere lengths of the initial population shapes population growth, especially through the distribution of cells’ shortest telomere lengths. We also quantified how factors influencing cell viability independently of telomeres can impact senescence rates. Overall, we demonstrate a temporal evolution in the composition of senescent cell populations—from a state directly linked to critically short telomeres to a state where senescence onset becomes stochastic. This population structure may promote genome instability and facilitate senescence escape.https://doi.org/10.1038/s41467-025-56196-z
spellingShingle Anaïs Rat
Veronica Martinez Fernandez
Marie Doumic
Maria Teresa Teixeira
Zhou Xu
Mathematical model linking telomeres to senescence in Saccharomyces cerevisiae reveals cell lineage versus population dynamics
Nature Communications
title Mathematical model linking telomeres to senescence in Saccharomyces cerevisiae reveals cell lineage versus population dynamics
title_full Mathematical model linking telomeres to senescence in Saccharomyces cerevisiae reveals cell lineage versus population dynamics
title_fullStr Mathematical model linking telomeres to senescence in Saccharomyces cerevisiae reveals cell lineage versus population dynamics
title_full_unstemmed Mathematical model linking telomeres to senescence in Saccharomyces cerevisiae reveals cell lineage versus population dynamics
title_short Mathematical model linking telomeres to senescence in Saccharomyces cerevisiae reveals cell lineage versus population dynamics
title_sort mathematical model linking telomeres to senescence in saccharomyces cerevisiae reveals cell lineage versus population dynamics
url https://doi.org/10.1038/s41467-025-56196-z
work_keys_str_mv AT anaisrat mathematicalmodellinkingtelomerestosenescenceinsaccharomycescerevisiaerevealscelllineageversuspopulationdynamics
AT veronicamartinezfernandez mathematicalmodellinkingtelomerestosenescenceinsaccharomycescerevisiaerevealscelllineageversuspopulationdynamics
AT mariedoumic mathematicalmodellinkingtelomerestosenescenceinsaccharomycescerevisiaerevealscelllineageversuspopulationdynamics
AT mariateresateixeira mathematicalmodellinkingtelomerestosenescenceinsaccharomycescerevisiaerevealscelllineageversuspopulationdynamics
AT zhouxu mathematicalmodellinkingtelomerestosenescenceinsaccharomycescerevisiaerevealscelllineageversuspopulationdynamics