Optimal design for parameter estimation in EEG problems in a 3D multilayered domain

The fundamental problem of collecting data in the ``best way'' in order to assure statistically efficient estimation of parameters is known as Optimal Experimental Design. Many inverse problems consist in selecting best parameter values of a given mathematical model based on fits to measu...

Full description

Saved in:
Bibliographic Details
Main Authors: H. T. Banks, D. Rubio, N. Saintier, M. I. Troparevsky
Format: Article
Language:English
Published: AIMS Press 2015-03-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2015.12.739
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832590104387911680
author H. T. Banks
D. Rubio
N. Saintier
M. I. Troparevsky
author_facet H. T. Banks
D. Rubio
N. Saintier
M. I. Troparevsky
author_sort H. T. Banks
collection DOAJ
description The fundamental problem of collecting data in the ``best way'' in order to assure statistically efficient estimation of parameters is known as Optimal Experimental Design. Many inverse problems consist in selecting best parameter values of a given mathematical model based on fits to measured data. These are usually formulated as optimization problems and the accuracy of their solutions depends not only on the chosen optimization scheme but also on the given data.We consider an electromagnetic interrogation problem, specifically one arising in an electroencephalography (EEG) problem, of finding optimal number and locations for sensors for source identification in a 3D unit sphere from data on its boundary. In this effort we compare the use of the classical $D$-optimal criterion for observation points as opposed to that for a uniform observation mesh. We consider location and best number of sensors and report results based on statistical uncertainty analysis of the resulting estimated parameters.
format Article
id doaj-art-29746cb3e68b4a16a49be75fe991f793
institution Kabale University
issn 1551-0018
language English
publishDate 2015-03-01
publisher AIMS Press
record_format Article
series Mathematical Biosciences and Engineering
spelling doaj-art-29746cb3e68b4a16a49be75fe991f7932025-01-24T02:32:12ZengAIMS PressMathematical Biosciences and Engineering1551-00182015-03-0112473976010.3934/mbe.2015.12.739Optimal design for parameter estimation in EEG problems in a 3D multilayered domainH. T. Banks0D. Rubio1N. Saintier2M. I. Troparevsky3Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC 27695-8212Centro de Matemática Aplicada, Universidad de San Martín, Buenos AiresInstituto de Ciencias, Universidad Nacional Gral. Sarmiento, Buenos AiresDep. de Matemática, Facultad de Ingeniería, Universidad de Buenos AiresThe fundamental problem of collecting data in the ``best way'' in order to assure statistically efficient estimation of parameters is known as Optimal Experimental Design. Many inverse problems consist in selecting best parameter values of a given mathematical model based on fits to measured data. These are usually formulated as optimization problems and the accuracy of their solutions depends not only on the chosen optimization scheme but also on the given data.We consider an electromagnetic interrogation problem, specifically one arising in an electroencephalography (EEG) problem, of finding optimal number and locations for sensors for source identification in a 3D unit sphere from data on its boundary. In this effort we compare the use of the classical $D$-optimal criterion for observation points as opposed to that for a uniform observation mesh. We consider location and best number of sensors and report results based on statistical uncertainty analysis of the resulting estimated parameters.https://www.aimspress.com/article/doi/10.3934/mbe.2015.12.739asymptotic error analysis.optimal design in 3d eeg analysisparameter estimationelectromagnetic inverse problems
spellingShingle H. T. Banks
D. Rubio
N. Saintier
M. I. Troparevsky
Optimal design for parameter estimation in EEG problems in a 3D multilayered domain
Mathematical Biosciences and Engineering
asymptotic error analysis.
optimal design in 3d eeg analysis
parameter estimation
electromagnetic inverse problems
title Optimal design for parameter estimation in EEG problems in a 3D multilayered domain
title_full Optimal design for parameter estimation in EEG problems in a 3D multilayered domain
title_fullStr Optimal design for parameter estimation in EEG problems in a 3D multilayered domain
title_full_unstemmed Optimal design for parameter estimation in EEG problems in a 3D multilayered domain
title_short Optimal design for parameter estimation in EEG problems in a 3D multilayered domain
title_sort optimal design for parameter estimation in eeg problems in a 3d multilayered domain
topic asymptotic error analysis.
optimal design in 3d eeg analysis
parameter estimation
electromagnetic inverse problems
url https://www.aimspress.com/article/doi/10.3934/mbe.2015.12.739
work_keys_str_mv AT htbanks optimaldesignforparameterestimationineegproblemsina3dmultilayereddomain
AT drubio optimaldesignforparameterestimationineegproblemsina3dmultilayereddomain
AT nsaintier optimaldesignforparameterestimationineegproblemsina3dmultilayereddomain
AT mitroparevsky optimaldesignforparameterestimationineegproblemsina3dmultilayereddomain