Prediction Study on PCI Failure of Reactor Fuel Based on a Radial Basis Function Neural Network
Pellet-clad interaction (PCI) is one of the major issues in fuel rod design and reactor core operation in water cooled reactors. The prediction of fuel rod failure by PCI is studied in this paper by the method of radial basis function neural network (RBFNN). The neural network is built through the a...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2016-01-01
|
Series: | Science and Technology of Nuclear Installations |
Online Access: | http://dx.doi.org/10.1155/2016/4720685 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832551594496884736 |
---|---|
author | Xinyu Wei Jiashuang Wan Fuyu Zhao |
author_facet | Xinyu Wei Jiashuang Wan Fuyu Zhao |
author_sort | Xinyu Wei |
collection | DOAJ |
description | Pellet-clad interaction (PCI) is one of the major issues in fuel rod design and reactor core operation in water cooled reactors. The prediction of fuel rod failure by PCI is studied in this paper by the method of radial basis function neural network (RBFNN). The neural network is built through the analysis of the existing experimental data. It is concluded that it is a suitable way to reduce the calculation complexity. A self-organized RBFNN is used in our study, which can vary its structure dynamically in order to maintain the prediction accuracy. For the purpose of the appropriate network complexity and overall computational efficiency, the hidden neurons in the RBFNN can be changed online based on the neuron activity and mutual information. The presented method is tested by the experimental data from the reference, and the results demonstrate its effectiveness. |
format | Article |
id | doaj-art-296ebdec31d24dd38467cae49d6903e9 |
institution | Kabale University |
issn | 1687-6075 1687-6083 |
language | English |
publishDate | 2016-01-01 |
publisher | Wiley |
record_format | Article |
series | Science and Technology of Nuclear Installations |
spelling | doaj-art-296ebdec31d24dd38467cae49d6903e92025-02-03T06:01:02ZengWileyScience and Technology of Nuclear Installations1687-60751687-60832016-01-01201610.1155/2016/47206854720685Prediction Study on PCI Failure of Reactor Fuel Based on a Radial Basis Function Neural NetworkXinyu Wei0Jiashuang Wan1Fuyu Zhao2School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, ChinaSchool of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, ChinaSchool of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, ChinaPellet-clad interaction (PCI) is one of the major issues in fuel rod design and reactor core operation in water cooled reactors. The prediction of fuel rod failure by PCI is studied in this paper by the method of radial basis function neural network (RBFNN). The neural network is built through the analysis of the existing experimental data. It is concluded that it is a suitable way to reduce the calculation complexity. A self-organized RBFNN is used in our study, which can vary its structure dynamically in order to maintain the prediction accuracy. For the purpose of the appropriate network complexity and overall computational efficiency, the hidden neurons in the RBFNN can be changed online based on the neuron activity and mutual information. The presented method is tested by the experimental data from the reference, and the results demonstrate its effectiveness.http://dx.doi.org/10.1155/2016/4720685 |
spellingShingle | Xinyu Wei Jiashuang Wan Fuyu Zhao Prediction Study on PCI Failure of Reactor Fuel Based on a Radial Basis Function Neural Network Science and Technology of Nuclear Installations |
title | Prediction Study on PCI Failure of Reactor Fuel Based on a Radial Basis Function Neural Network |
title_full | Prediction Study on PCI Failure of Reactor Fuel Based on a Radial Basis Function Neural Network |
title_fullStr | Prediction Study on PCI Failure of Reactor Fuel Based on a Radial Basis Function Neural Network |
title_full_unstemmed | Prediction Study on PCI Failure of Reactor Fuel Based on a Radial Basis Function Neural Network |
title_short | Prediction Study on PCI Failure of Reactor Fuel Based on a Radial Basis Function Neural Network |
title_sort | prediction study on pci failure of reactor fuel based on a radial basis function neural network |
url | http://dx.doi.org/10.1155/2016/4720685 |
work_keys_str_mv | AT xinyuwei predictionstudyonpcifailureofreactorfuelbasedonaradialbasisfunctionneuralnetwork AT jiashuangwan predictionstudyonpcifailureofreactorfuelbasedonaradialbasisfunctionneuralnetwork AT fuyuzhao predictionstudyonpcifailureofreactorfuelbasedonaradialbasisfunctionneuralnetwork |