An Efficient Noise Elimination Method for Non-stationary and Non-linear Signals by Averaging Decomposed Components
In this paper, a moving-average method of smoothing noise based on complex exponential decomposition is applied to eliminate noise of a non-stationary signal and a non-linear signal produced by Bouc–Wen model, which are added to white Gaussian noise to simulate the noise in measured signal. The meth...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-01-01
|
Series: | Shock and Vibration |
Online Access: | http://dx.doi.org/10.1155/2022/2068218 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a moving-average method of smoothing noise based on complex exponential decomposition is applied to eliminate noise of a non-stationary signal and a non-linear signal produced by Bouc–Wen model, which are added to white Gaussian noise to simulate the noise in measured signal. The method uses a sliding window cutting the entire non-stationary and/or non-linear signal into small segments and considers that the small segments are stable and linear. The segments are decomposed into a series of components via complex exponential decomposition, and the high-energy components are reserved to reconstruct de-noised signal. Then, due to the overlap of the reconstructed segments, the average value at the same time point of reconstruction signal is regarded as the de-noised data. A non-stationary signal and a non-linear signal are selected to investigate the performance of the proposed method, the results show that the proposed method has better de-noising efficiency compared with the wavelet shrinkage method and the Savitzky–Golay filter method based on EMD (EMD-SG) for dealing with the signals with SNR of 10 dB, 15 dB, and 20 dB, and de-noised signal using the proposed method has the highest signal-to-noise ratio (SNR) and the least root mean square error (RMSE). |
---|---|
ISSN: | 1875-9203 |