Object Tracking via 2DPCA and l2-Regularization

We present a fast and robust object tracking algorithm by using 2DPCA and l2-regularization in a Bayesian inference framework. Firstly, we model the challenging appearance of the tracked object using 2DPCA bases, which exploit the strength of subspace representation. Secondly, we adopt the l2-regula...

Full description

Saved in:
Bibliographic Details
Main Authors: Haijun Wang, Hongjuan Ge, Shengyan Zhang
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Journal of Electrical and Computer Engineering
Online Access:http://dx.doi.org/10.1155/2016/7975951
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a fast and robust object tracking algorithm by using 2DPCA and l2-regularization in a Bayesian inference framework. Firstly, we model the challenging appearance of the tracked object using 2DPCA bases, which exploit the strength of subspace representation. Secondly, we adopt the l2-regularization to solve the proposed presentation model and remove the trivial templates from the sparse tracking method which can provide a more fast tracking performance. Finally, we present a novel likelihood function that considers the reconstruction error, which is concluded from the orthogonal left-projection matrix and the orthogonal right-projection matrix. Experimental results on several challenging image sequences demonstrate that the proposed method can achieve more favorable performance against state-of-the-art tracking algorithms.
ISSN:2090-0147
2090-0155