Resolution enhanced sea ice concentration: a new algorithm applied to AMSR2 microwave radiometry data
Passive-microwave sea ice concentration (SIC) algorithms employ different frequencies and polarisations in their operational implementations. Commonly, these algorithms utilise combinations such as 19/37 GHz, yielding reduced measurement uncertainties but at a coarse spatial resolution. Alternativel...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Cambridge University Press
2025-01-01
|
| Series: | Annals of Glaciology |
| Subjects: | |
| Online Access: | https://www.cambridge.org/core/product/identifier/S0260305524000065/type/journal_article |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Passive-microwave sea ice concentration (SIC) algorithms employ different frequencies and polarisations in their operational implementations. Commonly, these algorithms utilise combinations such as 19/37 GHz, yielding reduced measurement uncertainties but at a coarse spatial resolution. Alternatively, these algorithms can solely use 89 GHz, producing a higher spatial resolution but with increased measurement uncertainties. This study evaluates the application of a resolution-enhancing SIC algorithm (reSICCI3LF), initially developed for the coarser Special Sensor Microwave Imager / Sounder, on the Advanced Microwave Scanning Radiometer. By applying reSICCI3LF, we aim to produce a 5 km SIC for 2013–2020 in the Fram Strait and the Barents and Kara Sea region that gains the benefits of both types of algorithms, high spatial resolution and low measurement uncertainty. |
|---|---|
| ISSN: | 0260-3055 1727-5644 |