Numerical Simulation of the Influence of Width of a Prefabricated Crack on the Dimensionless Stress Intensity Factor of Notched Semi-Circular Bend Specimens
To analyze the effect of the width of a prefabricated crack on the dimensionless stress intensity factor of notched semi-circular bend (NSCB) specimens, ABAQUS software was employed to perform numerical calibration of the crack tip stress intensity factor for the width of prefabricated cracks in the...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Shock and Vibration |
Online Access: | http://dx.doi.org/10.1155/2019/3291730 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To analyze the effect of the width of a prefabricated crack on the dimensionless stress intensity factor of notched semi-circular bend (NSCB) specimens, ABAQUS software was employed to perform numerical calibration of the crack tip stress intensity factor for the width of prefabricated cracks in the range of 0.0∼2.0 mm. The relative errors of the dimensionless stress intensity factor for different widths of prefabricated cracks were analyzed. The results indicate that the dimensionless stress intensity factor shows an approximate linear increase as the width of the prefabricated crack increases. The longer is the length of the prefabricated crack, the “faster” is the increase in speed. The effect of the dimensionless support spacing on the increase in the speed of the dimensionless stress intensity factor due to the increase in crack width is minimal. When the prefabricated crack width is 2.0 mm, the maximum relative error of the dimensionless stress intensity factor is 4.325%. The new formula for the dimensionless stress intensity factor that eliminates the influence of the width of a prefabricated crack is given, which provides a theoretical basis for the more accurate fracture toughness value measured using an NSCB specimen. |
---|---|
ISSN: | 1070-9622 1875-9203 |