An Improved C-V Model and Application to the Coal Rock Mesocrack Images

In order to accurately and comprehensively obtain information about coal rock mesocrack images, image processing technique based on partial differential equation (PDE) is introduced in order to expound on the active contour model without edges and overcome the deficiency of the C-V model. The improv...

Full description

Saved in:
Bibliographic Details
Main Authors: Yulong Chen, Hongwei Zhang
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Geofluids
Online Access:http://dx.doi.org/10.1155/2020/8852209
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to accurately and comprehensively obtain information about coal rock mesocrack images, image processing technique based on partial differential equation (PDE) is introduced in order to expound on the active contour model without edges and overcome the deficiency of the C-V model. The improved C-V model is adopted in order to process mesoimages of coal rocks containing single and multiple cracks and obtain high-quality binary images of coal rock mesocracks and the effective characteristic parameters of coal rock mesostructures through quantitative processing, which will lay solid foundations for the follow-up research into coal rock seepage computation and damage calculation. Studies have shown that, compared to the original C-V model, the improved model achieves better image segmentation effects and more accurate quantitative information about coal rock mesostructures for coal rock mesoimages with low contrast ratios and nonuniform grayscale, a fact showing that it can be applied to the calculation of coal rock permeability and damage factors.
ISSN:1468-8115
1468-8123