Economic and Environmental Evaluation and Optimal Ratio of Natural and Recycled Aggregate Production

Steady increase in overexploitation of stone quarries, generation of construction and demolition waste, and costs of preparing extra landfill space have become environmental and waste management challenges in metropolises. In this paper, aggregate production is studied in two scenarios: scenario 1 r...

Full description

Saved in:
Bibliographic Details
Main Authors: Milad Ghanbari, Armin Monir Abbasi, Mehdi Ravanshadnia
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2017/7458285
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Steady increase in overexploitation of stone quarries, generation of construction and demolition waste, and costs of preparing extra landfill space have become environmental and waste management challenges in metropolises. In this paper, aggregate production is studied in two scenarios: scenario 1 representing the production of natural aggregates (NA) and scenario 2 representing the production of recycled aggregates (RA). This study consists of two parts. In the first part, the objective is the environmental assessment (energy consumption and CO2 emission) and economic (cost) evaluation of these two scenarios, which is pursued by life-cycle assessment (LCA) method. In the second part, the results of the first part are used to estimate the optimal combination of production of NA and RA and thereby find an optimal solution (scenario) for a more eco-friendly aggregate production. The defined formulas and relationship are used to develop a model. The results of model validation show that the optimal ratio, in optimal scenario, is 50%. The results show that, compared to scenario 1, optimal scenario improves the energy consumption, CO2 emissions, and production cost by, respectively, 30%, 36%, and 31%, which demonstrate the effectiveness of this optimization.
ISSN:1687-8434
1687-8442