A Single-Cell Approach in Modeling the Dynamics of Tumor Microregions

Interactions between tumor cells and their environment lead to the formation of microregions containing nonhomogeneous subpopulations of cells and steep gradients in oxygen, glucose, and other metabolites. To address the formation of tumor microregions on the level of single cells, I propose a new t...

Full description

Saved in:
Bibliographic Details
Main Author: Katarzyna A. Rejniak
Format: Article
Language:English
Published: AIMS Press 2005-07-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2005.2.643
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Interactions between tumor cells and their environment lead to the formation of microregions containing nonhomogeneous subpopulations of cells and steep gradients in oxygen, glucose, and other metabolites. To address the formation of tumor microregions on the level of single cells, I propose a new two-dimensional time-dependent mathematical model taking explicitly into account the individually regulated biomechanical processes of tumor cells and the effect of oxygen consumption on their metabolism. Numerical simulations of the self-organized formation of tumor microregions are presented and the dynamics of such a process is discussed.
ISSN:1551-0018