Higher-Order Compact Finite Difference for Certain PDEs in Arbitrary Dimensions

In this paper, we first present the expression of a model of a fourth-order compact finite difference (CFD) scheme for the convection diffusion equation with variable convection coefficient. Then, we also obtain the fourth-order CFD schemes of the diffusion equation with variable diffusion coefficie...

Full description

Saved in:
Bibliographic Details
Main Authors: Yan Gao, Songlin Liu
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2020/8567605
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we first present the expression of a model of a fourth-order compact finite difference (CFD) scheme for the convection diffusion equation with variable convection coefficient. Then, we also obtain the fourth-order CFD schemes of the diffusion equation with variable diffusion coefficients. In addition, a fine description of the sixth-order CFD schemes is also developed for equations with constant coefficients, which is used to discuss certain partial differential equations (PDEs) with arbitrary dimensions. In this paper, various ways of numerical test calculations are prepared to evaluate performance of the fourth-order CFD and sixth-order CFD schemes, respectively, and the empirical results are proved to verify the effectiveness of the schemes in this paper.
ISSN:2314-8896
2314-8888