Theoretical Analysis of Isentropic Exponent Effects on the Internal Flow of Supercritical CO2 Centrifugal Compressors

The isentropic exponent in the near-critical region can sharply change with operation condition transitions of a closed Brayton cycle, thus having significant impacts on the compressor aerodynamic performance and the internal flow of the compressor embedded into the cycle. This paper investigates th...

Full description

Saved in:
Bibliographic Details
Main Authors: Ben Zhao, Zhiyuan Liu
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:International Journal of Chemical Engineering
Online Access:http://dx.doi.org/10.1155/2022/1809835
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The isentropic exponent in the near-critical region can sharply change with operation condition transitions of a closed Brayton cycle, thus having significant impacts on the compressor aerodynamic performance and the internal flow of the compressor embedded into the cycle. This paper investigates the isentropic exponent effects of the supercritical carbon dioxide (CO2) using theoretical analyses and three-dimensional computational fluid dynamic (CFD) simulations. The theoretical analysis reveals that the increasing isentropic exponent mitigates the impeller work coefficient and the impeller outlet Mach number but raises the suction side Mach number of the impeller blade and blade loading at the leading edge. The CFD results provide validations for the theoretical results. Based on the findings, a suggestion is offered to guide the physical experiment design of a centrifugal compressor with supercritical CO2 as its working fluid.
ISSN:1687-8078