Machine learning enabled measurements of astrophysical (p,n) reactions with the SECAR recoil separator
The synthesis of heavy elements in supernovae is affected by low-energy (n,p) and (p,n) reactions on unstable nuclei, yet experimental data on such reaction rates are scarce. The SECAR (SEparator for CApture Reactions) recoil separator at FRIB (Facility for Rare Isotope Beams) was originally designe...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2025-01-01
|
Series: | Physical Review Research |
Online Access: | http://doi.org/10.1103/PhysRevResearch.7.013074 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832592105141174272 |
---|---|
author | P. Tsintari N. Dimitrakopoulos R. Garg K. Hermansen C. Marshall F. Montes G. Perdikakis H. Schatz K. Setoodehnia H. Arora G. P. A. Berg R. Bhandari J. C. Blackmon C. R. Brune K. A. Chipps M. Couder C. Deibel A. Hood M. Horana Gamage R. Jain C. Maher S. Miskovich J. Pereira T. Ruland M. S. Smith M. Smith I. Sultana C. Tinson A. Tsantiri A. Villari L. Wagner R. G. T. Zegers |
author_facet | P. Tsintari N. Dimitrakopoulos R. Garg K. Hermansen C. Marshall F. Montes G. Perdikakis H. Schatz K. Setoodehnia H. Arora G. P. A. Berg R. Bhandari J. C. Blackmon C. R. Brune K. A. Chipps M. Couder C. Deibel A. Hood M. Horana Gamage R. Jain C. Maher S. Miskovich J. Pereira T. Ruland M. S. Smith M. Smith I. Sultana C. Tinson A. Tsantiri A. Villari L. Wagner R. G. T. Zegers |
author_sort | P. Tsintari |
collection | DOAJ |
description | The synthesis of heavy elements in supernovae is affected by low-energy (n,p) and (p,n) reactions on unstable nuclei, yet experimental data on such reaction rates are scarce. The SECAR (SEparator for CApture Reactions) recoil separator at FRIB (Facility for Rare Isotope Beams) was originally designed to measure astrophysical reactions that change the mass of a nucleus significantly. We used a novel approach that integrates machine learning with ion-optical simulations to find an ion-optical solution for the separator that enables the measurement of (p,n) reactions, despite the reaction leaving the mass of the nucleus nearly unchanged. A new measurement of the ^{58}Fe(p,n)^{58}Co reaction in inverse kinematics with a 3.66±0.12 MeV/nucleon ^{58}Fe beam (corresponding to 3.69±0.12 MeV proton energy in normal kinematics) yielded a cross-section of 20.3±6.3 mb and served as a proof of principle experiment for the new technique demonstrating its effectiveness in achieving the required performance criteria. This novel approach paves the way for studying astrophysically important (p,n) reactions on unstable nuclei produced at FRIB. |
format | Article |
id | doaj-art-255eb9a5a40e461c8b5aa23d0aa326bf |
institution | Kabale University |
issn | 2643-1564 |
language | English |
publishDate | 2025-01-01 |
publisher | American Physical Society |
record_format | Article |
series | Physical Review Research |
spelling | doaj-art-255eb9a5a40e461c8b5aa23d0aa326bf2025-01-21T15:53:16ZengAmerican Physical SocietyPhysical Review Research2643-15642025-01-017101307410.1103/PhysRevResearch.7.013074Machine learning enabled measurements of astrophysical (p,n) reactions with the SECAR recoil separatorP. TsintariN. DimitrakopoulosR. GargK. HermansenC. MarshallF. MontesG. PerdikakisH. SchatzK. SetoodehniaH. AroraG. P. A. BergR. BhandariJ. C. BlackmonC. R. BruneK. A. ChippsM. CouderC. DeibelA. HoodM. Horana GamageR. JainC. MaherS. MiskovichJ. PereiraT. RulandM. S. SmithM. SmithI. SultanaC. TinsonA. TsantiriA. VillariL. WagnerR. G. T. ZegersThe synthesis of heavy elements in supernovae is affected by low-energy (n,p) and (p,n) reactions on unstable nuclei, yet experimental data on such reaction rates are scarce. The SECAR (SEparator for CApture Reactions) recoil separator at FRIB (Facility for Rare Isotope Beams) was originally designed to measure astrophysical reactions that change the mass of a nucleus significantly. We used a novel approach that integrates machine learning with ion-optical simulations to find an ion-optical solution for the separator that enables the measurement of (p,n) reactions, despite the reaction leaving the mass of the nucleus nearly unchanged. A new measurement of the ^{58}Fe(p,n)^{58}Co reaction in inverse kinematics with a 3.66±0.12 MeV/nucleon ^{58}Fe beam (corresponding to 3.69±0.12 MeV proton energy in normal kinematics) yielded a cross-section of 20.3±6.3 mb and served as a proof of principle experiment for the new technique demonstrating its effectiveness in achieving the required performance criteria. This novel approach paves the way for studying astrophysically important (p,n) reactions on unstable nuclei produced at FRIB.http://doi.org/10.1103/PhysRevResearch.7.013074 |
spellingShingle | P. Tsintari N. Dimitrakopoulos R. Garg K. Hermansen C. Marshall F. Montes G. Perdikakis H. Schatz K. Setoodehnia H. Arora G. P. A. Berg R. Bhandari J. C. Blackmon C. R. Brune K. A. Chipps M. Couder C. Deibel A. Hood M. Horana Gamage R. Jain C. Maher S. Miskovich J. Pereira T. Ruland M. S. Smith M. Smith I. Sultana C. Tinson A. Tsantiri A. Villari L. Wagner R. G. T. Zegers Machine learning enabled measurements of astrophysical (p,n) reactions with the SECAR recoil separator Physical Review Research |
title | Machine learning enabled measurements of astrophysical (p,n) reactions with the SECAR recoil separator |
title_full | Machine learning enabled measurements of astrophysical (p,n) reactions with the SECAR recoil separator |
title_fullStr | Machine learning enabled measurements of astrophysical (p,n) reactions with the SECAR recoil separator |
title_full_unstemmed | Machine learning enabled measurements of astrophysical (p,n) reactions with the SECAR recoil separator |
title_short | Machine learning enabled measurements of astrophysical (p,n) reactions with the SECAR recoil separator |
title_sort | machine learning enabled measurements of astrophysical p n reactions with the secar recoil separator |
url | http://doi.org/10.1103/PhysRevResearch.7.013074 |
work_keys_str_mv | AT ptsintari machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT ndimitrakopoulos machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT rgarg machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT khermansen machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT cmarshall machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT fmontes machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT gperdikakis machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT hschatz machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT ksetoodehnia machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT harora machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT gpaberg machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT rbhandari machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT jcblackmon machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT crbrune machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT kachipps machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT mcouder machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT cdeibel machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT ahood machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT mhoranagamage machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT rjain machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT cmaher machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT smiskovich machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT jpereira machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT truland machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT mssmith machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT msmith machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT isultana machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT ctinson machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT atsantiri machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT avillari machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT lwagner machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator AT rgtzegers machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator |