Machine learning enabled measurements of astrophysical (p,n) reactions with the SECAR recoil separator

The synthesis of heavy elements in supernovae is affected by low-energy (n,p) and (p,n) reactions on unstable nuclei, yet experimental data on such reaction rates are scarce. The SECAR (SEparator for CApture Reactions) recoil separator at FRIB (Facility for Rare Isotope Beams) was originally designe...

Full description

Saved in:
Bibliographic Details
Main Authors: P. Tsintari, N. Dimitrakopoulos, R. Garg, K. Hermansen, C. Marshall, F. Montes, G. Perdikakis, H. Schatz, K. Setoodehnia, H. Arora, G. P. A. Berg, R. Bhandari, J. C. Blackmon, C. R. Brune, K. A. Chipps, M. Couder, C. Deibel, A. Hood, M. Horana Gamage, R. Jain, C. Maher, S. Miskovich, J. Pereira, T. Ruland, M. S. Smith, M. Smith, I. Sultana, C. Tinson, A. Tsantiri, A. Villari, L. Wagner, R. G. T. Zegers
Format: Article
Language:English
Published: American Physical Society 2025-01-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.7.013074
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832592105141174272
author P. Tsintari
N. Dimitrakopoulos
R. Garg
K. Hermansen
C. Marshall
F. Montes
G. Perdikakis
H. Schatz
K. Setoodehnia
H. Arora
G. P. A. Berg
R. Bhandari
J. C. Blackmon
C. R. Brune
K. A. Chipps
M. Couder
C. Deibel
A. Hood
M. Horana Gamage
R. Jain
C. Maher
S. Miskovich
J. Pereira
T. Ruland
M. S. Smith
M. Smith
I. Sultana
C. Tinson
A. Tsantiri
A. Villari
L. Wagner
R. G. T. Zegers
author_facet P. Tsintari
N. Dimitrakopoulos
R. Garg
K. Hermansen
C. Marshall
F. Montes
G. Perdikakis
H. Schatz
K. Setoodehnia
H. Arora
G. P. A. Berg
R. Bhandari
J. C. Blackmon
C. R. Brune
K. A. Chipps
M. Couder
C. Deibel
A. Hood
M. Horana Gamage
R. Jain
C. Maher
S. Miskovich
J. Pereira
T. Ruland
M. S. Smith
M. Smith
I. Sultana
C. Tinson
A. Tsantiri
A. Villari
L. Wagner
R. G. T. Zegers
author_sort P. Tsintari
collection DOAJ
description The synthesis of heavy elements in supernovae is affected by low-energy (n,p) and (p,n) reactions on unstable nuclei, yet experimental data on such reaction rates are scarce. The SECAR (SEparator for CApture Reactions) recoil separator at FRIB (Facility for Rare Isotope Beams) was originally designed to measure astrophysical reactions that change the mass of a nucleus significantly. We used a novel approach that integrates machine learning with ion-optical simulations to find an ion-optical solution for the separator that enables the measurement of (p,n) reactions, despite the reaction leaving the mass of the nucleus nearly unchanged. A new measurement of the ^{58}Fe(p,n)^{58}Co reaction in inverse kinematics with a 3.66±0.12 MeV/nucleon ^{58}Fe beam (corresponding to 3.69±0.12 MeV proton energy in normal kinematics) yielded a cross-section of 20.3±6.3 mb and served as a proof of principle experiment for the new technique demonstrating its effectiveness in achieving the required performance criteria. This novel approach paves the way for studying astrophysically important (p,n) reactions on unstable nuclei produced at FRIB.
format Article
id doaj-art-255eb9a5a40e461c8b5aa23d0aa326bf
institution Kabale University
issn 2643-1564
language English
publishDate 2025-01-01
publisher American Physical Society
record_format Article
series Physical Review Research
spelling doaj-art-255eb9a5a40e461c8b5aa23d0aa326bf2025-01-21T15:53:16ZengAmerican Physical SocietyPhysical Review Research2643-15642025-01-017101307410.1103/PhysRevResearch.7.013074Machine learning enabled measurements of astrophysical (p,n) reactions with the SECAR recoil separatorP. TsintariN. DimitrakopoulosR. GargK. HermansenC. MarshallF. MontesG. PerdikakisH. SchatzK. SetoodehniaH. AroraG. P. A. BergR. BhandariJ. C. BlackmonC. R. BruneK. A. ChippsM. CouderC. DeibelA. HoodM. Horana GamageR. JainC. MaherS. MiskovichJ. PereiraT. RulandM. S. SmithM. SmithI. SultanaC. TinsonA. TsantiriA. VillariL. WagnerR. G. T. ZegersThe synthesis of heavy elements in supernovae is affected by low-energy (n,p) and (p,n) reactions on unstable nuclei, yet experimental data on such reaction rates are scarce. The SECAR (SEparator for CApture Reactions) recoil separator at FRIB (Facility for Rare Isotope Beams) was originally designed to measure astrophysical reactions that change the mass of a nucleus significantly. We used a novel approach that integrates machine learning with ion-optical simulations to find an ion-optical solution for the separator that enables the measurement of (p,n) reactions, despite the reaction leaving the mass of the nucleus nearly unchanged. A new measurement of the ^{58}Fe(p,n)^{58}Co reaction in inverse kinematics with a 3.66±0.12 MeV/nucleon ^{58}Fe beam (corresponding to 3.69±0.12 MeV proton energy in normal kinematics) yielded a cross-section of 20.3±6.3 mb and served as a proof of principle experiment for the new technique demonstrating its effectiveness in achieving the required performance criteria. This novel approach paves the way for studying astrophysically important (p,n) reactions on unstable nuclei produced at FRIB.http://doi.org/10.1103/PhysRevResearch.7.013074
spellingShingle P. Tsintari
N. Dimitrakopoulos
R. Garg
K. Hermansen
C. Marshall
F. Montes
G. Perdikakis
H. Schatz
K. Setoodehnia
H. Arora
G. P. A. Berg
R. Bhandari
J. C. Blackmon
C. R. Brune
K. A. Chipps
M. Couder
C. Deibel
A. Hood
M. Horana Gamage
R. Jain
C. Maher
S. Miskovich
J. Pereira
T. Ruland
M. S. Smith
M. Smith
I. Sultana
C. Tinson
A. Tsantiri
A. Villari
L. Wagner
R. G. T. Zegers
Machine learning enabled measurements of astrophysical (p,n) reactions with the SECAR recoil separator
Physical Review Research
title Machine learning enabled measurements of astrophysical (p,n) reactions with the SECAR recoil separator
title_full Machine learning enabled measurements of astrophysical (p,n) reactions with the SECAR recoil separator
title_fullStr Machine learning enabled measurements of astrophysical (p,n) reactions with the SECAR recoil separator
title_full_unstemmed Machine learning enabled measurements of astrophysical (p,n) reactions with the SECAR recoil separator
title_short Machine learning enabled measurements of astrophysical (p,n) reactions with the SECAR recoil separator
title_sort machine learning enabled measurements of astrophysical p n reactions with the secar recoil separator
url http://doi.org/10.1103/PhysRevResearch.7.013074
work_keys_str_mv AT ptsintari machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT ndimitrakopoulos machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT rgarg machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT khermansen machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT cmarshall machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT fmontes machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT gperdikakis machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT hschatz machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT ksetoodehnia machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT harora machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT gpaberg machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT rbhandari machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT jcblackmon machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT crbrune machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT kachipps machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT mcouder machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT cdeibel machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT ahood machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT mhoranagamage machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT rjain machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT cmaher machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT smiskovich machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT jpereira machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT truland machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT mssmith machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT msmith machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT isultana machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT ctinson machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT atsantiri machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT avillari machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT lwagner machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator
AT rgtzegers machinelearningenabledmeasurementsofastrophysicalpnreactionswiththesecarrecoilseparator