A Vortex Identification Method Based on Extreme Learning Machine

Vortex identification and visualization are important means to understand the underlying physical mechanism of the flow field. Local vortex identification methods need to combine with the manual selection of the appropriate threshold, which leads to poor robustness. Global vortex identification meth...

Full description

Saved in:
Bibliographic Details
Main Authors: Jun Wang, Lei Guo, Yueqing Wang, Liang Deng, Fang Wang, Tong Li
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:International Journal of Aerospace Engineering
Online Access:http://dx.doi.org/10.1155/2020/8865001
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Vortex identification and visualization are important means to understand the underlying physical mechanism of the flow field. Local vortex identification methods need to combine with the manual selection of the appropriate threshold, which leads to poor robustness. Global vortex identification methods are of high computational complexity and time-consuming. Machine learning methods are related to the size and shape of the flow field, which are weak in versatility and scalability. It cannot be extended and is suitable for flow fields of different sizes. Recently, proposed deep learning methods have long network training time and high computational complexity. Aiming at the above problems, we present a novel vortex identification method based on the Convolutional Neural Networks-Extreme Learning Machine (CNN-ELM). This method transforms the vortex identification problem into a binary classification problem, and can quickly, objectively, and robustly identify vortices from the flow field. A large number of experiments prove the effectiveness of our method, which can improve or supplement the shortcomings of existing methods.
ISSN:1687-5966
1687-5974