A New Kind of Shift Operators for Infinite Circular and Spherical Wells

A new kind of shift operators for infinite circular and spherical wells is identified. These shift operators depend on all spatial variables of quantum systems and connect some eigenstates of confined systems of different radii R sharing energy levels with a common eigenvalue. In circular well, the...

Full description

Saved in:
Bibliographic Details
Main Authors: Guo-Hua Sun, K. D. Launey, T. Dytrych, Shi-Hai Dong, J. P. Draayer
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2014/987376
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832553930394959872
author Guo-Hua Sun
K. D. Launey
T. Dytrych
Shi-Hai Dong
J. P. Draayer
author_facet Guo-Hua Sun
K. D. Launey
T. Dytrych
Shi-Hai Dong
J. P. Draayer
author_sort Guo-Hua Sun
collection DOAJ
description A new kind of shift operators for infinite circular and spherical wells is identified. These shift operators depend on all spatial variables of quantum systems and connect some eigenstates of confined systems of different radii R sharing energy levels with a common eigenvalue. In circular well, the momentum operators P±=Px±iPy play the role of shift operators. The Px and Py operators, the third projection of the orbital angular momentum operator Lz, and the Hamiltonian H form a complete set of commuting operators with the SO(2) symmetry. In spherical well, the shift operators establish a novel relation between ψlm(r) and ψ(l ± 1)(m±1)(r).
format Article
id doaj-art-2501ef834bb4469f88b0fd7aab2efa97
institution Kabale University
issn 1687-9120
1687-9139
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Advances in Mathematical Physics
spelling doaj-art-2501ef834bb4469f88b0fd7aab2efa972025-02-03T05:52:50ZengWileyAdvances in Mathematical Physics1687-91201687-91392014-01-01201410.1155/2014/987376987376A New Kind of Shift Operators for Infinite Circular and Spherical WellsGuo-Hua Sun0K. D. Launey1T. Dytrych2Shi-Hai Dong3J. P. Draayer4Centro Universitario Valle de Chalco, Universidad Autónoma del Estado de México, 56615 Valle de Chalco Solidaridad, MEX, MexicoDepartment of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, USADepartment of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, USADepartment of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, USADepartment of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, USAA new kind of shift operators for infinite circular and spherical wells is identified. These shift operators depend on all spatial variables of quantum systems and connect some eigenstates of confined systems of different radii R sharing energy levels with a common eigenvalue. In circular well, the momentum operators P±=Px±iPy play the role of shift operators. The Px and Py operators, the third projection of the orbital angular momentum operator Lz, and the Hamiltonian H form a complete set of commuting operators with the SO(2) symmetry. In spherical well, the shift operators establish a novel relation between ψlm(r) and ψ(l ± 1)(m±1)(r).http://dx.doi.org/10.1155/2014/987376
spellingShingle Guo-Hua Sun
K. D. Launey
T. Dytrych
Shi-Hai Dong
J. P. Draayer
A New Kind of Shift Operators for Infinite Circular and Spherical Wells
Advances in Mathematical Physics
title A New Kind of Shift Operators for Infinite Circular and Spherical Wells
title_full A New Kind of Shift Operators for Infinite Circular and Spherical Wells
title_fullStr A New Kind of Shift Operators for Infinite Circular and Spherical Wells
title_full_unstemmed A New Kind of Shift Operators for Infinite Circular and Spherical Wells
title_short A New Kind of Shift Operators for Infinite Circular and Spherical Wells
title_sort new kind of shift operators for infinite circular and spherical wells
url http://dx.doi.org/10.1155/2014/987376
work_keys_str_mv AT guohuasun anewkindofshiftoperatorsforinfinitecircularandsphericalwells
AT kdlauney anewkindofshiftoperatorsforinfinitecircularandsphericalwells
AT tdytrych anewkindofshiftoperatorsforinfinitecircularandsphericalwells
AT shihaidong anewkindofshiftoperatorsforinfinitecircularandsphericalwells
AT jpdraayer anewkindofshiftoperatorsforinfinitecircularandsphericalwells
AT guohuasun newkindofshiftoperatorsforinfinitecircularandsphericalwells
AT kdlauney newkindofshiftoperatorsforinfinitecircularandsphericalwells
AT tdytrych newkindofshiftoperatorsforinfinitecircularandsphericalwells
AT shihaidong newkindofshiftoperatorsforinfinitecircularandsphericalwells
AT jpdraayer newkindofshiftoperatorsforinfinitecircularandsphericalwells