Short-Wave Near-Infrared Spectrometer for Alcohol Determination and Temperature Correction

A multichannel short-wave near-infrared (SW-NIR) spectrometer module based on charge-coupled device (CCD) detection was designed. The design relied on a tungsten lamp enhanced by light emitting diodes, a fixed grating monochromator and a linear CCD array. The main advantages were high optical resolu...

Full description

Saved in:
Bibliographic Details
Main Authors: Qingbo Fu, Jinming Wang, Guannan Lin, Hui Suo, Chun Zhao
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Journal of Analytical Methods in Chemistry
Online Access:http://dx.doi.org/10.1155/2012/728128
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A multichannel short-wave near-infrared (SW-NIR) spectrometer module based on charge-coupled device (CCD) detection was designed. The design relied on a tungsten lamp enhanced by light emitting diodes, a fixed grating monochromator and a linear CCD array. The main advantages were high optical resolution and an optimized signal-to-noise ratio (0.24 nm and 500, resp.) in the whole wavelength range of 650 to 1100 nm. An application to alcohol determination using partial least squares calibration and the temperature correction was presented. It was found that the direct transfer method had significant systematic prediction errors due to temperature effect. Generalized least squares weighting (GLSW) method was utilized for temperature correction. After recalibration, the RMSEP found for the 25°C model was 0.53% v/v and errors of the same order of magnitude were obtained at other temperatures (15, 35 and 40°C). And an 𝑟2 better than 0.99 was achieved for each validation set. The possibility and accuracy of using the miniature SW-NIR spectrometer and GLSW transfer calibration method for alcohol determination at different temperatures were proven. And the analysis procedure was simple and fast, allowing a strict control of alcohol content in the wine industry.
ISSN:2090-8865
2090-8873