Quantifying uncertainty in the estimation of probability distributions
We consider ordinary least squares parameter estimation problemswhere the unknown parameters to be estimated are probabilitydistributions. A computational framework for quantification ofuncertainty (e.g., standard errors) associated with the estimatedparameters is given and sample numerical findings...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2008-09-01
|
Series: | Mathematical Biosciences and Engineering |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/mbe.2008.5.647 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832590172271673344 |
---|---|
author | H.T. Banks Jimena L. Davis |
author_facet | H.T. Banks Jimena L. Davis |
author_sort | H.T. Banks |
collection | DOAJ |
description | We consider ordinary least squares parameter estimation problemswhere the unknown parameters to be estimated are probabilitydistributions. A computational framework for quantification ofuncertainty (e.g., standard errors) associated with the estimatedparameters is given and sample numerical findings are presented. |
format | Article |
id | doaj-art-246f648824964d858862f8d827dc5a69 |
institution | Kabale University |
issn | 1551-0018 |
language | English |
publishDate | 2008-09-01 |
publisher | AIMS Press |
record_format | Article |
series | Mathematical Biosciences and Engineering |
spelling | doaj-art-246f648824964d858862f8d827dc5a692025-01-24T01:58:42ZengAIMS PressMathematical Biosciences and Engineering1551-00182008-09-015464766710.3934/mbe.2008.5.647Quantifying uncertainty in the estimation of probability distributionsH.T. Banks0Jimena L. Davis1Center for Research in Scientific Computation, North Carolina State University, Raleigh, North Carolina 27695-8205Center for Research in Scientific Computation, North Carolina State University, Raleigh, North Carolina 27695-8205We consider ordinary least squares parameter estimation problemswhere the unknown parameters to be estimated are probabilitydistributions. A computational framework for quantification ofuncertainty (e.g., standard errors) associated with the estimatedparameters is given and sample numerical findings are presented.https://www.aimspress.com/article/doi/10.3934/mbe.2008.5.647parameter estimationasymptotic standard error theoryconfidence bandsprobability distributionsapproximationsize-structured populations |
spellingShingle | H.T. Banks Jimena L. Davis Quantifying uncertainty in the estimation of probability distributions Mathematical Biosciences and Engineering parameter estimation asymptotic standard error theory confidence bands probability distributions approximation size-structured populations |
title | Quantifying uncertainty in the estimation of probability distributions |
title_full | Quantifying uncertainty in the estimation of probability distributions |
title_fullStr | Quantifying uncertainty in the estimation of probability distributions |
title_full_unstemmed | Quantifying uncertainty in the estimation of probability distributions |
title_short | Quantifying uncertainty in the estimation of probability distributions |
title_sort | quantifying uncertainty in the estimation of probability distributions |
topic | parameter estimation asymptotic standard error theory confidence bands probability distributions approximation size-structured populations |
url | https://www.aimspress.com/article/doi/10.3934/mbe.2008.5.647 |
work_keys_str_mv | AT htbanks quantifyinguncertaintyintheestimationofprobabilitydistributions AT jimenaldavis quantifyinguncertaintyintheestimationofprobabilitydistributions |