Quantifying uncertainty in the estimation of probability distributions

We consider ordinary least squares parameter estimation problemswhere the unknown parameters to be estimated are probabilitydistributions. A computational framework for quantification ofuncertainty (e.g., standard errors) associated with the estimatedparameters is given and sample numerical findings...

Full description

Saved in:
Bibliographic Details
Main Authors: H.T. Banks, Jimena L. Davis
Format: Article
Language:English
Published: AIMS Press 2008-09-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2008.5.647
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832590172271673344
author H.T. Banks
Jimena L. Davis
author_facet H.T. Banks
Jimena L. Davis
author_sort H.T. Banks
collection DOAJ
description We consider ordinary least squares parameter estimation problemswhere the unknown parameters to be estimated are probabilitydistributions. A computational framework for quantification ofuncertainty (e.g., standard errors) associated with the estimatedparameters is given and sample numerical findings are presented.
format Article
id doaj-art-246f648824964d858862f8d827dc5a69
institution Kabale University
issn 1551-0018
language English
publishDate 2008-09-01
publisher AIMS Press
record_format Article
series Mathematical Biosciences and Engineering
spelling doaj-art-246f648824964d858862f8d827dc5a692025-01-24T01:58:42ZengAIMS PressMathematical Biosciences and Engineering1551-00182008-09-015464766710.3934/mbe.2008.5.647Quantifying uncertainty in the estimation of probability distributionsH.T. Banks0Jimena L. Davis1Center for Research in Scientific Computation, North Carolina State University, Raleigh, North Carolina 27695-8205Center for Research in Scientific Computation, North Carolina State University, Raleigh, North Carolina 27695-8205We consider ordinary least squares parameter estimation problemswhere the unknown parameters to be estimated are probabilitydistributions. A computational framework for quantification ofuncertainty (e.g., standard errors) associated with the estimatedparameters is given and sample numerical findings are presented.https://www.aimspress.com/article/doi/10.3934/mbe.2008.5.647parameter estimationasymptotic standard error theoryconfidence bandsprobability distributionsapproximationsize-structured populations
spellingShingle H.T. Banks
Jimena L. Davis
Quantifying uncertainty in the estimation of probability distributions
Mathematical Biosciences and Engineering
parameter estimation
asymptotic standard error theory
confidence bands
probability distributions
approximation
size-structured populations
title Quantifying uncertainty in the estimation of probability distributions
title_full Quantifying uncertainty in the estimation of probability distributions
title_fullStr Quantifying uncertainty in the estimation of probability distributions
title_full_unstemmed Quantifying uncertainty in the estimation of probability distributions
title_short Quantifying uncertainty in the estimation of probability distributions
title_sort quantifying uncertainty in the estimation of probability distributions
topic parameter estimation
asymptotic standard error theory
confidence bands
probability distributions
approximation
size-structured populations
url https://www.aimspress.com/article/doi/10.3934/mbe.2008.5.647
work_keys_str_mv AT htbanks quantifyinguncertaintyintheestimationofprobabilitydistributions
AT jimenaldavis quantifyinguncertaintyintheestimationofprobabilitydistributions