Stock volatility as an anomalous diffusion process

Anomalous diffusion (AD) describes transport phenomena where the mean-square displacement (MSD) of a particle does not scale linearly with time, deviating from classical diffusion. This behavior, often linked to non-equilibrium phenomena, sheds light on the underlying mechanisms in various systems,...

Full description

Saved in:
Bibliographic Details
Main Authors: Rubén V. Arévalo, J. Alberto Conejero, Òscar Garibo-i-Orts, Alfred Peris
Format: Article
Language:English
Published: AIMS Press 2024-12-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20241663
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832590729571991552
author Rubén V. Arévalo
J. Alberto Conejero
Òscar Garibo-i-Orts
Alfred Peris
author_facet Rubén V. Arévalo
J. Alberto Conejero
Òscar Garibo-i-Orts
Alfred Peris
author_sort Rubén V. Arévalo
collection DOAJ
description Anomalous diffusion (AD) describes transport phenomena where the mean-square displacement (MSD) of a particle does not scale linearly with time, deviating from classical diffusion. This behavior, often linked to non-equilibrium phenomena, sheds light on the underlying mechanisms in various systems, including biological and financial domains.Integrating insights from anomalous diffusion into financial analysis could significantly improve our understanding of market behaviors, similar to their impacts on biological systems. In financial markets, accurately estimating asset volatility—whether historical or implied—is vital for investors.We introduce a novel methodology to estimate the volatility of stocks and similar assets, combining anomalous diffusion principles with machine learning. Our architecture combines convolutional and recurrent neural networks (bidirectional long short-term memory units). Our model computes the diffusion exponent of a financial time series to measure its volatility and it categorizes market movements into five diffusion models: annealed transit time motion (ATTM), continuous time random walk (CTRW), fractional Brownian motion (FBM), Lévy walk (LW), and scaled Brownian motion (SBM).Our findings suggest that the diffusion exponent derived from anomalous diffusion processes provides insightful and novel perspectives on stock market volatility. By differentiating between subdiffusion, superdiffusion, and normal diffusion, our methodology offers a more nuanced understanding of market dynamics than traditional volatility metrics.
format Article
id doaj-art-2467e082f6b84d96b35cf1af81c427d4
institution Kabale University
issn 2473-6988
language English
publishDate 2024-12-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj-art-2467e082f6b84d96b35cf1af81c427d42025-01-23T07:53:25ZengAIMS PressAIMS Mathematics2473-69882024-12-01912349473496510.3934/math.20241663Stock volatility as an anomalous diffusion processRubén V. Arévalo0J. Alberto Conejero1Òscar Garibo-i-Orts2Alfred Peris3I.U. de Matemàtica Pura i Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain; rubenvicentearevalo@gmail.com, aconejero@upv.es, aperis@mat.upv.esI.U. de Matemàtica Pura i Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain; rubenvicentearevalo@gmail.com, aconejero@upv.es, aperis@mat.upv.esI.U. de Matemàtica Pura i Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain; rubenvicentearevalo@gmail.com, aconejero@upv.es, aperis@mat.upv.esI.U. de Matemàtica Pura i Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain; rubenvicentearevalo@gmail.com, aconejero@upv.es, aperis@mat.upv.esAnomalous diffusion (AD) describes transport phenomena where the mean-square displacement (MSD) of a particle does not scale linearly with time, deviating from classical diffusion. This behavior, often linked to non-equilibrium phenomena, sheds light on the underlying mechanisms in various systems, including biological and financial domains.Integrating insights from anomalous diffusion into financial analysis could significantly improve our understanding of market behaviors, similar to their impacts on biological systems. In financial markets, accurately estimating asset volatility—whether historical or implied—is vital for investors.We introduce a novel methodology to estimate the volatility of stocks and similar assets, combining anomalous diffusion principles with machine learning. Our architecture combines convolutional and recurrent neural networks (bidirectional long short-term memory units). Our model computes the diffusion exponent of a financial time series to measure its volatility and it categorizes market movements into five diffusion models: annealed transit time motion (ATTM), continuous time random walk (CTRW), fractional Brownian motion (FBM), Lévy walk (LW), and scaled Brownian motion (SBM).Our findings suggest that the diffusion exponent derived from anomalous diffusion processes provides insightful and novel perspectives on stock market volatility. By differentiating between subdiffusion, superdiffusion, and normal diffusion, our methodology offers a more nuanced understanding of market dynamics than traditional volatility metrics.https://www.aimspress.com/article/doi/10.3934/math.20241663volatilityanomalous diffusionrecurrent neural networkstock marketsandi-challenge
spellingShingle Rubén V. Arévalo
J. Alberto Conejero
Òscar Garibo-i-Orts
Alfred Peris
Stock volatility as an anomalous diffusion process
AIMS Mathematics
volatility
anomalous diffusion
recurrent neural network
stock markets
andi-challenge
title Stock volatility as an anomalous diffusion process
title_full Stock volatility as an anomalous diffusion process
title_fullStr Stock volatility as an anomalous diffusion process
title_full_unstemmed Stock volatility as an anomalous diffusion process
title_short Stock volatility as an anomalous diffusion process
title_sort stock volatility as an anomalous diffusion process
topic volatility
anomalous diffusion
recurrent neural network
stock markets
andi-challenge
url https://www.aimspress.com/article/doi/10.3934/math.20241663
work_keys_str_mv AT rubenvarevalo stockvolatilityasananomalousdiffusionprocess
AT jalbertoconejero stockvolatilityasananomalousdiffusionprocess
AT oscargariboiorts stockvolatilityasananomalousdiffusionprocess
AT alfredperis stockvolatilityasananomalousdiffusionprocess