Understanding the microscopic origin of the magnetic interactions in CoNb2O6

Abstract Motivated by the on-going discussion on the nature of magnetism in the quantum Ising chain CoNb2O6, we present a first-principles-based analysis of its exchange interactions with additional modeling, addressing drawbacks of a purely density functional theory ansatz. This method allows us to...

Full description

Saved in:
Bibliographic Details
Main Authors: Amanda A. Konieczna, David A. S. Kaib, Stephen M. Winter, Roser Valentí
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:npj Quantum Materials
Online Access:https://doi.org/10.1038/s41535-024-00715-6
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Motivated by the on-going discussion on the nature of magnetism in the quantum Ising chain CoNb2O6, we present a first-principles-based analysis of its exchange interactions with additional modeling, addressing drawbacks of a purely density functional theory ansatz. This method allows us to extract and understand the origin of the magnetic couplings—including all symmetry-allowed terms - and resolve conflicting model descriptions in CoNb2O6. We find that the twisted Kitaev chain and transverse-field ferromagnetic Ising chain views are mutually compatible, although additional off-diagonal exchanges are required for a complete picture. We show that the dominant exchange interaction is a ligand-centered process—involving e g electrons -, rendered anisotropic by low-symmetry crystal fields in CoNb2O6, resulting in dominant Ising exchange. Smaller bond-dependent anisotropies are found to originate from d − d kinetic exchange processes involving t 2g electrons. We demonstrate the validity of our low-energy model by comparing its predictions to measured THz and INS spectra.
ISSN:2397-4648