Global water gaps under future warming levels
Abstract Understanding the impacts of climate change on water resources is crucial for developing effective adaptation strategies. We quantify “water gaps”, or unsustainable water use – the shortfall where water demand exceeds supply, resulting in scarcity. We quantify baseline and future water gaps...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-025-56517-2 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Understanding the impacts of climate change on water resources is crucial for developing effective adaptation strategies. We quantify “water gaps”, or unsustainable water use – the shortfall where water demand exceeds supply, resulting in scarcity. We quantify baseline and future water gaps using a multi-model analysis that incorporates two plausible future warming scenarios. The baseline global water gap stands at 457.9 km3/yr, with projections indicating an increase of 26.5 km3/yr (+5.8%) and 67.4 km3/yr (+14.7%) under 1.5 °C and 3 °C warming scenarios, respectively. These projections highlight the uneven impact of warming levels on water gaps, emphasizing the need for continued climate change mitigation to alleviate stress on water resources. Our results also underscore the unequal adaptation needs across countries and basins, influenced by varying warming scenarios, with important regional differences and model variability complicating future projections. Robust water management strategies are needed to tackle the escalating water scarcity caused by global warming. |
---|---|
ISSN: | 2041-1723 |