Late-Age Properties of Concrete with Different Binders Cured under 45°C at Early Ages

It is commonly accepted that high curing temperature (near 60°C or above) results in reduced mechanical properties and durability of concrete compared to normal curing temperature. The internal temperature of concrete structures at early ages is not so high as 60°C in many circumstances. In this pap...

Full description

Saved in:
Bibliographic Details
Main Author: Hu Jin
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2017/8425718
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is commonly accepted that high curing temperature (near 60°C or above) results in reduced mechanical properties and durability of concrete compared to normal curing temperature. The internal temperature of concrete structures at early ages is not so high as 60°C in many circumstances. In this paper, concretes were cured at 45°C at early ages and their late-age properties were studied. The concrete cured at 20°C was employed as the reference sample. Four different concretes were used: plain cement concrete, concrete containing fly ash, concrete containing ground granulate blast furnace slag (GGBS), and concrete containing silica fume. The results show that, for each concrete, high-temperature curing after precuring does not have any adverse effect on the nonevaporable water content, compressive strength, permeability to chloride ions, and the connected porosity of concrete at late ages compared with standard curing. Additionally, high-temperature curing improves the late-age properties of concrete containing fly ash and GGBS.
ISSN:1687-8434
1687-8442