Assessing Landsat Processing Levels and Support Vector Machine Classification
The availability of different processing levels for satellite images makes it important to measure their suitability for classification tasks. This study investigates the impact of the Landsat data processing level on the accuracy of land cover classification using a support vector machine (SVM) cl...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Baghdad
2025-01-01
|
Series: | Ibn Al-Haitham Journal for Pure and Applied Sciences |
Subjects: | |
Online Access: | https://jih.uobaghdad.edu.iq/index.php/j/article/view/3992 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The availability of different processing levels for satellite images makes it important to measure their suitability for classification tasks. This study investigates the impact of the Landsat data processing level on the accuracy of land cover classification using a support vector machine (SVM) classifier. The classification accuracy values of Landsat 8 (LS8) and Landsat 9 (LS9) data at different processing levels vary notably. For LS9, Collection 2 Level 2 (C2L2) achieved the highest accuracy of (86.55%) with the polynomial kernel of the SVM classifier, surpassing the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) at (85.31%) and Collection 2 Level 1 (C2L1) at (84.93%). The LS8 data exhibits similar behavior. Conversely, when using the maximum-likelihood classifier, the highest accuracy (83.06%) was achieved with FLAASH. The results demonstrate significant variations in accuracies for different land cover classes, which emphasizes the importance of per-class accuracy. The results highlight the critical role of preprocessing techniques and classifier selection in optimizing the classification processes and land cover mapping accuracy for remote sensing geospatial applications. Finally, the actual differences in classification accuracy between processing levels are larger than those given by the confusion matrix. So, the consideration of alternative evaluation methods with the absence of reference images is critical.
|
---|---|
ISSN: | 1609-4042 2521-3407 |