The Generalization Error Bound for the Multiclass Analytical Center Classifier

This paper presents the multiclass classifier based on analytical center of feasible space (MACM). This multiclass classifier is formulated as quadratic constrained linear optimization and does not need repeatedly constructing classifiers to separate a single class from all the others. Its generaliz...

Full description

Saved in:
Bibliographic Details
Main Authors: Zeng Fanzi, Ma Xiaolong
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:The Scientific World Journal
Online Access:http://dx.doi.org/10.1155/2013/574748
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832564594536611840
author Zeng Fanzi
Ma Xiaolong
author_facet Zeng Fanzi
Ma Xiaolong
author_sort Zeng Fanzi
collection DOAJ
description This paper presents the multiclass classifier based on analytical center of feasible space (MACM). This multiclass classifier is formulated as quadratic constrained linear optimization and does not need repeatedly constructing classifiers to separate a single class from all the others. Its generalization error upper bound is proved theoretically. The experiments on benchmark datasets validate the generalization performance of MACM.
format Article
id doaj-art-2338944574f44a27b27293f79101fa33
institution Kabale University
issn 1537-744X
language English
publishDate 2013-01-01
publisher Wiley
record_format Article
series The Scientific World Journal
spelling doaj-art-2338944574f44a27b27293f79101fa332025-02-03T01:10:35ZengWileyThe Scientific World Journal1537-744X2013-01-01201310.1155/2013/574748574748The Generalization Error Bound for the Multiclass Analytical Center ClassifierZeng Fanzi0Ma Xiaolong1Key Laboratory for Embedded and Network Computing of Hunan Province, Hunan University, Changsha 410082, ChinaKey Laboratory for Embedded and Network Computing of Hunan Province, Hunan University, Changsha 410082, ChinaThis paper presents the multiclass classifier based on analytical center of feasible space (MACM). This multiclass classifier is formulated as quadratic constrained linear optimization and does not need repeatedly constructing classifiers to separate a single class from all the others. Its generalization error upper bound is proved theoretically. The experiments on benchmark datasets validate the generalization performance of MACM.http://dx.doi.org/10.1155/2013/574748
spellingShingle Zeng Fanzi
Ma Xiaolong
The Generalization Error Bound for the Multiclass Analytical Center Classifier
The Scientific World Journal
title The Generalization Error Bound for the Multiclass Analytical Center Classifier
title_full The Generalization Error Bound for the Multiclass Analytical Center Classifier
title_fullStr The Generalization Error Bound for the Multiclass Analytical Center Classifier
title_full_unstemmed The Generalization Error Bound for the Multiclass Analytical Center Classifier
title_short The Generalization Error Bound for the Multiclass Analytical Center Classifier
title_sort generalization error bound for the multiclass analytical center classifier
url http://dx.doi.org/10.1155/2013/574748
work_keys_str_mv AT zengfanzi thegeneralizationerrorboundforthemulticlassanalyticalcenterclassifier
AT maxiaolong thegeneralizationerrorboundforthemulticlassanalyticalcenterclassifier
AT zengfanzi generalizationerrorboundforthemulticlassanalyticalcenterclassifier
AT maxiaolong generalizationerrorboundforthemulticlassanalyticalcenterclassifier