MF-FusionNet: A Lightweight Multimodal Network for Monitoring Drought Stress in Winter Wheat Based on Remote Sensing Imagery

To improve the identification of drought-affected areas in winter wheat, this paper proposes a lightweight network called MF-FusionNet based on multimodal fusion of RGB images and vegetation indices (NDVI and EVI). A multimodal dataset covering various drought levels in winter wheat was constructed....

Full description

Saved in:
Bibliographic Details
Main Authors: Qiang Guo, Bo Han, Pengyu Chu, Yiping Wan, Jingjing Zhang
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Agriculture
Subjects:
Online Access:https://www.mdpi.com/2077-0472/15/15/1639
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To improve the identification of drought-affected areas in winter wheat, this paper proposes a lightweight network called MF-FusionNet based on multimodal fusion of RGB images and vegetation indices (NDVI and EVI). A multimodal dataset covering various drought levels in winter wheat was constructed. To enable deep fusion of modalities, a Lightweight Multimodal Fusion Block (LMFB) was designed, and a Dual-Coordinate Attention Feature Extraction module (DCAFE) was introduced to enhance semantic feature representation and improve drought region identification. To address differences in scale and semantics across network layers, a Cross-Stage Feature Fusion Strategy (CFFS) was proposed to integrate multi-level features and enhance overall performance. The effectiveness of each module was validated through ablation experiments. Compared to traditional single-modal methods, MF-FusionNet achieved higher accuracy, recall, and F1-score—improved by 1.35%, 1.43%, and 1.29%, respectively—reaching 96.71%, 96.71%, and 96.64%. A basis for real-time monitoring and precise irrigation management under winter wheat drought stress was provided by this study.
ISSN:2077-0472