The Alternating Direction Method of Multipliers for Sufficient Dimension Reduction
The minimum average variance estimation (MAVE) method has proven to be an effective approach to sufficient dimension reduction. In this study, we apply the computationally efficient optimization algorithm named alternating direction method of multipliers (ADMM) to a particular approach (MAVE or mini...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2024-01-01
|
Series: | Journal of Mathematics |
Online Access: | http://dx.doi.org/10.1155/2024/3692883 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The minimum average variance estimation (MAVE) method has proven to be an effective approach to sufficient dimension reduction. In this study, we apply the computationally efficient optimization algorithm named alternating direction method of multipliers (ADMM) to a particular approach (MAVE or minimum average variance estimation) to the problem of sufficient dimension reduction (SDR). Under some assumptions, we prove that the iterative sequence generated by ADMM converges to some point of the associated augmented Lagrangian function. Moreover, that point is stationary. It also presents some numerical simulations on synthetic data to demonstrate the computational efficiency of the algorithm. |
---|---|
ISSN: | 2314-4785 |