Integrated Workflow of Geomechanics, Hydraulic Fracturing, and Reservoir Simulation for Production Estimation of a Shale Gas Reservoir
In this research, an integrated workflow from geomechanics to reservoir simulation is suggested to accurately estimate performances of a shale gas reservoir. Rather than manipulating values of hydraulic fracturing such as fracture geometry and transmissibility, the workflow tries to update model par...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Geofluids |
Online Access: | http://dx.doi.org/10.1155/2021/8856070 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this research, an integrated workflow from geomechanics to reservoir simulation is suggested to accurately estimate performances of a shale gas reservoir. Rather than manipulating values of hydraulic fracturing such as fracture geometry and transmissibility, the workflow tries to update model parameters to derive reliable hydraulic fracturing results. A mechanical earth model (MEM) is built from seismic attribute and drilling and diagnostic fracture injection test results. Then, the MEM is calibrated with microseismic measurements obtained in a field. Leakoff coefficient and horizontal stress anisotropy are sensitive parameters of the MEM that influence the propagation of the fracture network and gas productions. Various combinations of calibration parameters from a single-well simulation are evaluated. Then, an appropriate combination is chosen from the whole simulation results of a pad to reduce the uncertainty. Finally, production estimations of the four wells which have slightly different fracture design are compared with seven-year production history. Their results are reasonably matched with actual data having 8% of global error due to successful development of the reservoir model with geomechanical parameters. |
---|---|
ISSN: | 1468-8115 1468-8123 |