Temperature Prediction and Fault Warning of High-Speed Shaft of Wind Turbine Gearbox Based on Hybrid Deep Learning Model

Gearbox failure represents one of the most time-consuming maintenance challenges in wind turbine operations. Abnormal temperature variations in the gearbox high-speed shaft (GHSS) serve as reliable indicators of potential faults. This study proposes a Spatio-Temporal Attentive (STA) synergistic arch...

Full description

Saved in:
Bibliographic Details
Main Authors: Min Zhang, Jijie Wei, Zhenli Sui, Kun Xu, Wenyong Yuan
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/13/7/1337
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gearbox failure represents one of the most time-consuming maintenance challenges in wind turbine operations. Abnormal temperature variations in the gearbox high-speed shaft (GHSS) serve as reliable indicators of potential faults. This study proposes a Spatio-Temporal Attentive (STA) synergistic architecture for GHSS fault detection and early warning by utilizing the in situ monitoring data from a wind farm. This comprehensive architecture involves five modules: data preprocessing, multi-dimensional spatial feature extraction, temporal dependency modeling, global relationship learning, and hyperparameter optimization. It was achieved by using real-time monitoring data to predict the GHSS temperature in 10 min, with an accuracy of 1 °C. Compared to the long short-term memory (LSTM) and convolutional neural network and LSTM hybrid models, the STA architecture reduces the root mean square error of the prediction by approximately 37% and 13%, respectively. Furthermore, the architecture establishes a normal operating condition model and provides benchmark eigenvalues for subsequent fault warnings. The model was validated to issue early warnings up to seven hours before the fault alert is triggered by the supervisory control and data acquisition system of the wind turbine. By offering reliable, cost-effective prognostics without additional hardware, this approach significantly improves wind turbine health management and fault prevention.
ISSN:2077-1312