A Data-Driven Approach to Estimate Incident-Induced Delays Using Incomplete Probe Vehicle Data: Application to Safety Service Patrol Program Evaluation
This paper presents a data-driven approach to estimate incident-induced delays (IIDs) using probe vehicle data while accounting for missing data. The proposed approach is applied to evaluate the effectiveness of a safety service patrol (SSP) program. Existing data-driven methods for IID estimation u...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2023-01-01
|
Series: | Journal of Advanced Transportation |
Online Access: | http://dx.doi.org/10.1155/2023/3402853 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a data-driven approach to estimate incident-induced delays (IIDs) using probe vehicle data while accounting for missing data. The proposed approach is applied to evaluate the effectiveness of a safety service patrol (SSP) program. Existing data-driven methods for IID estimation usually rely on complete data sets. The proposed approach employs a random forest-based classification model and an interpolation method to estimate IIDs when real-time data are completely or partially missing during the incident-impacted time period. It also identifies reference profiles from the closest spatial-temporal road segments to improve data availability. The case study shows that the SSP program in the Quad Cities area of Iowa reduces IIDs associated with various incidents by 15%–91%. This data-driven evaluation framework can be applied to other traffic incident management programs, allowing more accurate and objective evaluations of their effectiveness. |
---|---|
ISSN: | 2042-3195 |