Gas-Phase Photocatalytic Oxidation of Dimethylamine: The Reaction Pathway and Kinetics

Gas-phase photocatalytic oxidation (PCO) and thermal catalytic oxidation (TCO) of dimethylamine (DMA) on titanium dioxide was studied in a continuous flow simple tubular reactor. Volatile PCO products of DMA included ammonia, formamide, carbon dioxide, and water. Ammonia was further oxidized in mino...

Full description

Saved in:
Bibliographic Details
Main Authors: Anna Kachina, Sergei Preis, Juha Kallas
Format: Article
Language:English
Published: Wiley 2007-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2007/79847
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gas-phase photocatalytic oxidation (PCO) and thermal catalytic oxidation (TCO) of dimethylamine (DMA) on titanium dioxide was studied in a continuous flow simple tubular reactor. Volatile PCO products of DMA included ammonia, formamide, carbon dioxide, and water. Ammonia was further oxidized in minor amounts to nitrous oxide and nitrogen dioxide. Effective at 573 K, TCO resulted in the formation of ammonia, hydrogen cyanide, carbon monoxide, carbon dioxide, and water. The PCO kinetic data fit well to the monomolecular Langmuir-Hinshelwood model, whereas TCO kinetic behaviour matched the first-order process. No deactivation of the photocatalyst during the multiple long-run experiments was observed.
ISSN:1110-662X
1687-529X