Sequential recommendation algorithm for long-tail users based on knowledge-enhanced contrastive learning
Sequential recommendation predicts next items for users based on their historical interactions. Existing methods capture long-term dependencies but struggle to recommend precisely for users with short interaction sequences, especially for long-tail users. Therefore, a sequential recommendation algor...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | zho |
| Published: |
Editorial Department of Journal on Communications
2024-06-01
|
| Series: | Tongxin xuebao |
| Subjects: | |
| Online Access: | http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2024107/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|