Analysis of a Benchmark Building Installed with Tuned Mass Dampers under Wind and Earthquake Loads
This study presents analysis of a benchmark building installed with tuned mass dampers (TMDs) while subjected to wind and earthquake loads. Different TMD schemes are applied to reduce dynamic responses of the building under wind and earthquakes. The coupled equations of motion are formulated and sol...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Shock and Vibration |
Online Access: | http://dx.doi.org/10.1155/2019/7091819 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832558985365946368 |
---|---|
author | S. Elias R. Rupakhety S. Olafsson |
author_facet | S. Elias R. Rupakhety S. Olafsson |
author_sort | S. Elias |
collection | DOAJ |
description | This study presents analysis of a benchmark building installed with tuned mass dampers (TMDs) while subjected to wind and earthquake loads. Different TMD schemes are applied to reduce dynamic responses of the building under wind and earthquakes. The coupled equations of motion are formulated and solved using numerical methods. The uncontrolled building (NC) and the controlled building are subjected to a set of 100 earthquake ground motions and wind forces. The effectiveness of using different multiple TMD (MTMD) schemes as opposed to single TMD (STMD) is presented. Optimal TMD parameters and their location are investigated. For a tall structure like the one studied here, TMDs are found to be more effective in controlling acceleration response than displacement, when subjected to wind forces. It is observed that MTMDs with equal stiffness in each of the TMDs (usually considered for wind response control), when optimized for a given structure, are effective in controlling acceleration response under both wind and earthquake forces. However, if the device is designed with equal mass in every floor, it is less effective in controlling wind-induced floor acceleration. Therefore, when it comes to multihazard response control, distributed TMDs with equal stiffnesses should be preferred over those with equal masses. |
format | Article |
id | doaj-art-220a5fe875cd4a7eb69002a27b195f5d |
institution | Kabale University |
issn | 1070-9622 1875-9203 |
language | English |
publishDate | 2019-01-01 |
publisher | Wiley |
record_format | Article |
series | Shock and Vibration |
spelling | doaj-art-220a5fe875cd4a7eb69002a27b195f5d2025-02-03T01:31:06ZengWileyShock and Vibration1070-96221875-92032019-01-01201910.1155/2019/70918197091819Analysis of a Benchmark Building Installed with Tuned Mass Dampers under Wind and Earthquake LoadsS. Elias0R. Rupakhety1S. Olafsson2Earthquake Engineering Research Centre (EERC), University of Iceland, Reykjavik, IcelandEarthquake Engineering Research Centre (EERC), University of Iceland, Reykjavik, IcelandEarthquake Engineering Research Centre (EERC), University of Iceland, Reykjavik, IcelandThis study presents analysis of a benchmark building installed with tuned mass dampers (TMDs) while subjected to wind and earthquake loads. Different TMD schemes are applied to reduce dynamic responses of the building under wind and earthquakes. The coupled equations of motion are formulated and solved using numerical methods. The uncontrolled building (NC) and the controlled building are subjected to a set of 100 earthquake ground motions and wind forces. The effectiveness of using different multiple TMD (MTMD) schemes as opposed to single TMD (STMD) is presented. Optimal TMD parameters and their location are investigated. For a tall structure like the one studied here, TMDs are found to be more effective in controlling acceleration response than displacement, when subjected to wind forces. It is observed that MTMDs with equal stiffness in each of the TMDs (usually considered for wind response control), when optimized for a given structure, are effective in controlling acceleration response under both wind and earthquake forces. However, if the device is designed with equal mass in every floor, it is less effective in controlling wind-induced floor acceleration. Therefore, when it comes to multihazard response control, distributed TMDs with equal stiffnesses should be preferred over those with equal masses.http://dx.doi.org/10.1155/2019/7091819 |
spellingShingle | S. Elias R. Rupakhety S. Olafsson Analysis of a Benchmark Building Installed with Tuned Mass Dampers under Wind and Earthquake Loads Shock and Vibration |
title | Analysis of a Benchmark Building Installed with Tuned Mass Dampers under Wind and Earthquake Loads |
title_full | Analysis of a Benchmark Building Installed with Tuned Mass Dampers under Wind and Earthquake Loads |
title_fullStr | Analysis of a Benchmark Building Installed with Tuned Mass Dampers under Wind and Earthquake Loads |
title_full_unstemmed | Analysis of a Benchmark Building Installed with Tuned Mass Dampers under Wind and Earthquake Loads |
title_short | Analysis of a Benchmark Building Installed with Tuned Mass Dampers under Wind and Earthquake Loads |
title_sort | analysis of a benchmark building installed with tuned mass dampers under wind and earthquake loads |
url | http://dx.doi.org/10.1155/2019/7091819 |
work_keys_str_mv | AT selias analysisofabenchmarkbuildinginstalledwithtunedmassdampersunderwindandearthquakeloads AT rrupakhety analysisofabenchmarkbuildinginstalledwithtunedmassdampersunderwindandearthquakeloads AT solafsson analysisofabenchmarkbuildinginstalledwithtunedmassdampersunderwindandearthquakeloads |