Consensus Tracking of Fractional-Order Multiagent Systems via Fractional-Order Iterative Learning Control
In this work, the consensus problem of fractional-order multiagent systems with the general linear model of fixed topology is studied. Both distributed PDα-type and Dα-type fractional-order iterative learning control (FOILC) algorithms are proposed. Here, a virtual leader is introduced to generate t...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2019/2192168 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, the consensus problem of fractional-order multiagent systems with the general linear model of fixed topology is studied. Both distributed PDα-type and Dα-type fractional-order iterative learning control (FOILC) algorithms are proposed. Here, a virtual leader is introduced to generate the desired trajectory, fixed communication topology is considered, and only a subset of followers can access the desired trajectory. The convergence conditions are proved using graph theory, fractional calculus, and λ norm theory. The theoretical analysis shows that the output of each agent completely tracks the expected trajectory in a limited time as the iteration number increases for both PDα-type and Dα-type FOILC algorithms. Extensive numerical simulations are given to demonstrate the feasibility and effectiveness. |
---|---|
ISSN: | 1076-2787 1099-0526 |