Chemometric Analysis of Elemental Fingerprints for GE Authentication of Multiple Geographical Origins

The feasibility of combining elemental fingerprints and chemical pattern recognition methods for authentication of the geographical origins of a Chinese herb, Gastrodia elata BI. (GE), was studied in this paper. A total of 210 GE samples were collected from 7 different producing areas. The levels of...

Full description

Saved in:
Bibliographic Details
Main Authors: Lu Xu, Qiong Shi, Si-Min Yan, Hai-Yan Fu, Shunping Xie, Daowang Lu
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Journal of Analytical Methods in Chemistry
Online Access:http://dx.doi.org/10.1155/2019/2796502
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The feasibility of combining elemental fingerprints and chemical pattern recognition methods for authentication of the geographical origins of a Chinese herb, Gastrodia elata BI. (GE), was studied in this paper. A total of 210 GE samples were collected from 7 different producing areas. The levels of 15 mineral elements in GE, including Zn, Cd, Co, Cr, Cu, Ca, Mg, Mn, Mo, Ni, Pb, Sr, Fe, Na, and K, were determined using inductively coupled plasma mass spectrometry (ICP-MS). Using the autoscaled data of elemental fingerprints and partial least-squares discriminant analysis (PLSDA), two chemometrics strategies for multiclass classifications, One-Versus-Rest (OVR) and One-Versus-One (OVO), were studied and compared in discrimination of GE geographical origins. As a result, OVR-PLSDA and OVO-PLSDA could achieve the classification accuracy of 0.672 and 0.925, respectively. The results indicate that mineral elemental fingerprints coupled with chemometrics can provide a useful alternative method for simultaneous discrimination of multiple GE geographical origins.
ISSN:2090-8865
2090-8873