Targeting the Heart of Mycobacterium: Advances in Anti-Tubercular Agents Disrupting Cell Wall Biosynthesis

<i>Mycobacterium tuberculosis</i> infections continue to pose a significant global health challenge, particularly due to the rise of multidrug-resistant strains, random mycobacterial mutations, and the complications associated with short-term antibiotic regimens. Currently, five approved...

Full description

Saved in:
Bibliographic Details
Main Authors: Ahmad Diab, Henry Dickerson, Othman Al Musaimi
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Pharmaceuticals
Subjects:
Online Access:https://www.mdpi.com/1424-8247/18/1/70
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<i>Mycobacterium tuberculosis</i> infections continue to pose a significant global health challenge, particularly due to the rise of multidrug-resistant strains, random mycobacterial mutations, and the complications associated with short-term antibiotic regimens. Currently, five approved drugs target cell wall biosynthesis in <i>Mycobacterium tuberculosis</i>. This review provides a comprehensive analysis of these drugs and their molecular mechanisms. Isoniazid, thioamides, and delamanid primarily disrupt mycolic acid synthesis, with recent evidence indicating that delamanid also inhibits decaprenylphosphoryl-β-D-ribose-2-epimerase, thereby impairing arabinogalactan biosynthesis. Cycloserine remains the sole approved drug that inhibits peptidoglycan synthesis, the foundational layer of the mycobacterial cell wall. Furthermore, ethambutol interferes with arabinogalactan synthesis by targeting arabinosyl transferase enzymes, particularly embB- and embC-encoded variants. Beyond these, six promising molecules currently in Phase II clinical trials are designed to target arabinan synthesis pathways, sutezolid, TBA 7371, OPC-167832, SQ109, and both benzothiazinone derivatives BTZ043 and PBTZ169, highlighting advancements in the development of cell wall-targeting therapies.
ISSN:1424-8247