Bifurcation Behavior Analysis in a Predator-Prey Model

A predator-prey model is studied mathematically and numerically. The aim is to explore how some key factors influence dynamic evolutionary mechanism of steady conversion and bifurcation behavior in predator-prey model. The theoretical works have been pursuing the investigation of the existence and s...

Full description

Saved in:
Bibliographic Details
Main Authors: Nan Wang, Min Zhao, Hengguo Yu, Chuanjun Dai, Beibei Wang, Pengfei Wang
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2016/3565316
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A predator-prey model is studied mathematically and numerically. The aim is to explore how some key factors influence dynamic evolutionary mechanism of steady conversion and bifurcation behavior in predator-prey model. The theoretical works have been pursuing the investigation of the existence and stability of the equilibria, as well as the occurrence of bifurcation behaviors (transcritical bifurcation, saddle-node bifurcation, and Hopf bifurcation), which can deduce a standard parameter controlled relationship and in turn provide a theoretical basis for the numerical simulation. Numerical analysis ensures reliability of the theoretical results and illustrates that three stable equilibria will arise simultaneously in the model. It testifies the existence of Bogdanov-Takens bifurcation, too. It should also be stressed that the dynamic evolutionary mechanism of steady conversion and bifurcation behavior mainly depend on a specific key parameter. In a word, all these results are expected to be of use in the study of the dynamic complexity of ecosystems.
ISSN:1026-0226
1607-887X