Analysis of Partial Discharge Measurements using Coupling Capacitor in Rotating Machine

Partial discharge (PD) is a significant concern in the operation of rotating machines such as generators and motors, as it can lead to insulation degradation over time, reducing the reliability and lifespan of the machines. To monitor PD activity, coupling capacitors (CC) are widely used as sensors...

Full description

Saved in:
Bibliographic Details
Main Authors: Ahmad Syukri Abd Rahman, Mohamad Nur Khairul Hafizi Rohani, Nur Dini Athirah Gazata, Afifah Shuhada Rosmi, Ayob Nazmi Nanyan, Aiman Ismail Mohamed Jamil, Mohd Helmy Halim Abdul Majid, Normiza Masturina Samsuddin
Format: Article
Language:English
Published: Iran University of Science and Technology 2025-06-01
Series:Iranian Journal of Electrical and Electronic Engineering
Subjects:
Online Access:http://ijeee.iust.ac.ir/article-1-3661-en.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Partial discharge (PD) is a significant concern in the operation of rotating machines such as generators and motors, as it can lead to insulation degradation over time, reducing the reliability and lifespan of the machines. To monitor PD activity, coupling capacitors (CC) are widely used as sensors for online PD detection, as they can effectively capture PD pulses in high-voltage (HV) rotating machines. The primary objective of this research is to measure and analyze PD signals using a CC sensor for HV rotating machines under varying input voltages and frequencies, following the guidelines of the IEC 60270 standard and utilizing the MPD 600 device. The experimental setup includes performing insulation resistance (IR) testing, PD calibration, and PD measurement. Additionally, this paper provides a detailed study of PD signal characteristics, specifically focusing on phase-resolved partial discharge (PRPD) patterns, to understand the behavior of PD in HV rotating machines, enhancing fault diagnosis and preventive maintenance strategies.
ISSN:1735-2827
2383-3890