Breaking Down Linear Low-Density Polyethylene (LLDPE) Using Fungal Mycelium (Part A): A Path Towards Sustainable Waste Management and Its Possible Economic Impacts

Linear low-density polyethylene (LLDPE) waste presents a major environmental concern due to its high and widespread use. This study explores the potential of fungal mycelium as a bioremediation solution for LLDPE degradation, by evaluating on mycelial growth efficiency, ligninolytic enzyme activity,...

Full description

Saved in:
Bibliographic Details
Main Authors: Worawoot Aiduang, Kritsana Jatuwong, Kingkarn Ratanapong, Thanaporn Promjaidee, Orlavanh Xayyavong, Sinang Hongsanan, Saisamorn Lumyong
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Life
Subjects:
Online Access:https://www.mdpi.com/2075-1729/15/5/755
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Linear low-density polyethylene (LLDPE) waste presents a major environmental concern due to its high and widespread use. This study explores the potential of fungal mycelium as a bioremediation solution for LLDPE degradation, by evaluating on mycelial growth efficiency, ligninolytic enzyme activity, weight loss, surface morphology changes, and economic feasibility. Among the tested fungal species, <i>Schizophyllum commune</i> WE032, <i>Lentinus sajor-caju</i> TBRC6266, and <i>Trametes flavida</i> AM011, <i>S. commune</i> demonstrated the most vigorous mycelial expansion (20.53 mm/day) and highest biomass accumulation (276.87 mg). Screening for ligninolytic enzymes revealed significant laccase (Lac) and manganese peroxidase (MnP) activity in all three species indicating their potential in polymer degradation. Weight loss analysis showed that <i>S. commune</i> achieved the greatest LLDPE degradation (1.182% after 30 days), highlighting its enzymatic and metabolic efficiency in breaking down synthetic polymers. Surface morphology studies supported these findings, revealing substantial erosion was observed in LLDPE sheets treated with <i>S. commune</i> and <i>L. sajor-caju</i>, confirming their effectiveness in polymer disruption. FTIR analysis indicated the formation of new functional groups and alterations in the carbon backbone, suggesting active depolymerization processes. Economic evaluation demonstrated that fungal biodegradation is a cost-effective and environmentally sustainable strategy, aligning with circular economy principles by enabling the generation of value-added products from plastic waste. Additionally, fungal-based waste treatment aligns with circular economy principles, generating value-added products while mitigating plastic pollution. These findings highlight fungal mycelium’s potential for plastic waste management, advocating for further research on optimizing growth conditions, enhancing enzyme expression, and scaling industrial applications. Future research will focus on integrating fungal bioremediation with biomass residues from agricultural and forestry sectors, offering a comprehensive solution for waste management and environmental sustainability.
ISSN:2075-1729