Cloud–Edge Collaborative Model Adaptation Based on Deep Q-Network and Transfer Feature Extraction
With the rapid development of smart devices and the Internet of Things (IoT), the explosive growth of data has placed increasingly higher demands on real-time processing and intelligent decision making. Cloud-edge collaborative computing has emerged as a mainstream architecture to address these chal...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/15/8335 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | With the rapid development of smart devices and the Internet of Things (IoT), the explosive growth of data has placed increasingly higher demands on real-time processing and intelligent decision making. Cloud-edge collaborative computing has emerged as a mainstream architecture to address these challenges. However, in sky-ground integrated systems, the limited computing capacity of edge devices and the inconsistency between cloud-side fusion results and edge-side detection outputs significantly undermine the reliability of edge inference. To overcome these issues, this paper proposes a cloud-edge collaborative model adaptation framework that integrates deep reinforcement learning via Deep Q-Networks (DQN) with local feature transfer. The framework enables category-level dynamic decision making, allowing for selective migration of classification head parameters to achieve on-demand adaptive optimization of the edge model and enhance consistency between cloud and edge results. Extensive experiments conducted on a large-scale multi-view remote sensing aircraft detection dataset demonstrate that the proposed method significantly improves cloud-edge consistency. The detection consistency rate reaches 90%, with some scenarios approaching 100%. Ablation studies further validate the necessity of the DQN-based decision strategy, which clearly outperforms static heuristics. In the model adaptation comparison, the proposed method improves the detection precision of the A321 category from 70.30% to 71.00% and the average precision (AP) from 53.66% to 53.71%. For the A330 category, the precision increases from 32.26% to 39.62%, indicating strong adaptability across different target types. This study offers a novel and effective solution for cloud-edge model adaptation under resource-constrained conditions, enhancing both the consistency of cloud-edge fusion and the robustness of edge-side intelligent inference. |
|---|---|
| ISSN: | 2076-3417 |