Cloud–Edge Collaborative Model Adaptation Based on Deep Q-Network and Transfer Feature Extraction

With the rapid development of smart devices and the Internet of Things (IoT), the explosive growth of data has placed increasingly higher demands on real-time processing and intelligent decision making. Cloud-edge collaborative computing has emerged as a mainstream architecture to address these chal...

Full description

Saved in:
Bibliographic Details
Main Authors: Jue Chen, Xin Cheng, Yanjie Jia, Shuai Tan
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/15/8335
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the rapid development of smart devices and the Internet of Things (IoT), the explosive growth of data has placed increasingly higher demands on real-time processing and intelligent decision making. Cloud-edge collaborative computing has emerged as a mainstream architecture to address these challenges. However, in sky-ground integrated systems, the limited computing capacity of edge devices and the inconsistency between cloud-side fusion results and edge-side detection outputs significantly undermine the reliability of edge inference. To overcome these issues, this paper proposes a cloud-edge collaborative model adaptation framework that integrates deep reinforcement learning via Deep Q-Networks (DQN) with local feature transfer. The framework enables category-level dynamic decision making, allowing for selective migration of classification head parameters to achieve on-demand adaptive optimization of the edge model and enhance consistency between cloud and edge results. Extensive experiments conducted on a large-scale multi-view remote sensing aircraft detection dataset demonstrate that the proposed method significantly improves cloud-edge consistency. The detection consistency rate reaches 90%, with some scenarios approaching 100%. Ablation studies further validate the necessity of the DQN-based decision strategy, which clearly outperforms static heuristics. In the model adaptation comparison, the proposed method improves the detection precision of the A321 category from 70.30% to 71.00% and the average precision (AP) from 53.66% to 53.71%. For the A330 category, the precision increases from 32.26% to 39.62%, indicating strong adaptability across different target types. This study offers a novel and effective solution for cloud-edge model adaptation under resource-constrained conditions, enhancing both the consistency of cloud-edge fusion and the robustness of edge-side intelligent inference.
ISSN:2076-3417