Artificial intelligence-driven mobile interpretation of a semi-quantitative cryptococcal antigen lateral flow assay

Abstract Objectives Cryptococcosis remains a severe global health concern, underscoring the urgent need for rapid and reliable diagnostic solutions. Point-of-care tests (POCTs), such as the cryptococcal antigen semi-quantitative (CrAgSQ) lateral flow assay (LFA), offer promise in addressing this cha...

Full description

Saved in:
Bibliographic Details
Main Authors: David Bermejo-Peláez, Ana Alastruey-Izquierdo, Narda Medina, Daniel Capellán-Martín, Oscar Bonilla, Miguel Luengo-Oroz, Juan Luis Rodríguez-Tudela
Format: Article
Language:English
Published: BMC 2024-08-01
Series:IMA Fungus
Subjects:
Online Access:https://doi.org/10.1186/s43008-024-00158-5
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832542996478820352
author David Bermejo-Peláez
Ana Alastruey-Izquierdo
Narda Medina
Daniel Capellán-Martín
Oscar Bonilla
Miguel Luengo-Oroz
Juan Luis Rodríguez-Tudela
author_facet David Bermejo-Peláez
Ana Alastruey-Izquierdo
Narda Medina
Daniel Capellán-Martín
Oscar Bonilla
Miguel Luengo-Oroz
Juan Luis Rodríguez-Tudela
author_sort David Bermejo-Peláez
collection DOAJ
description Abstract Objectives Cryptococcosis remains a severe global health concern, underscoring the urgent need for rapid and reliable diagnostic solutions. Point-of-care tests (POCTs), such as the cryptococcal antigen semi-quantitative (CrAgSQ) lateral flow assay (LFA), offer promise in addressing this challenge. However, their subjective interpretation poses a limitation. Our objectives encompass the development and validation of a digital platform based on Artificial Intelligence (AI), assessing its semi-quantitative LFA interpretation performance, and exploring its potential to quantify CrAg concentrations directly from LFA images. Methods We tested 53 cryptococcal antigen (CrAg) concentrations spanning from 0 to 5000 ng/ml. A total of 318 CrAgSQ LFAs were inoculated and systematically photographed twice, employing two distinct smartphones, resulting in a dataset of 1272 images. We developed an AI algorithm designed for the automated interpretation of CrAgSQ LFAs. Concurrently, we explored the relationship between quantified test line intensities and CrAg concentrations. Results Our algorithm surpasses visual reading in sensitivity, and shows fewer discrepancies (p < 0.0001). The system exhibited capability of predicting CrAg concentrations exclusively based on a photograph of the LFA (Pearson correlation coefficient of 0.85). Conclusions This technology's adaptability for various LFAs suggests broader applications. AI-driven interpretations have transformative potential, revolutionizing cryptococcosis diagnosis, offering standardized, reliable, and efficient POCT results.
format Article
id doaj-art-20bf56408e694af09df733209ae7d9c4
institution Kabale University
issn 2210-6359
language English
publishDate 2024-08-01
publisher BMC
record_format Article
series IMA Fungus
spelling doaj-art-20bf56408e694af09df733209ae7d9c42025-02-03T12:00:27ZengBMCIMA Fungus2210-63592024-08-011511910.1186/s43008-024-00158-5Artificial intelligence-driven mobile interpretation of a semi-quantitative cryptococcal antigen lateral flow assayDavid Bermejo-Peláez0Ana Alastruey-Izquierdo1Narda Medina2Daniel Capellán-Martín3Oscar Bonilla4Miguel Luengo-Oroz5Juan Luis Rodríguez-Tudela6SpotlabMycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos IIIAsociación de Salud IntegralSpotlabMycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos IIISpotlabGlobal Action for Fungal InfectionsAbstract Objectives Cryptococcosis remains a severe global health concern, underscoring the urgent need for rapid and reliable diagnostic solutions. Point-of-care tests (POCTs), such as the cryptococcal antigen semi-quantitative (CrAgSQ) lateral flow assay (LFA), offer promise in addressing this challenge. However, their subjective interpretation poses a limitation. Our objectives encompass the development and validation of a digital platform based on Artificial Intelligence (AI), assessing its semi-quantitative LFA interpretation performance, and exploring its potential to quantify CrAg concentrations directly from LFA images. Methods We tested 53 cryptococcal antigen (CrAg) concentrations spanning from 0 to 5000 ng/ml. A total of 318 CrAgSQ LFAs were inoculated and systematically photographed twice, employing two distinct smartphones, resulting in a dataset of 1272 images. We developed an AI algorithm designed for the automated interpretation of CrAgSQ LFAs. Concurrently, we explored the relationship between quantified test line intensities and CrAg concentrations. Results Our algorithm surpasses visual reading in sensitivity, and shows fewer discrepancies (p < 0.0001). The system exhibited capability of predicting CrAg concentrations exclusively based on a photograph of the LFA (Pearson correlation coefficient of 0.85). Conclusions This technology's adaptability for various LFAs suggests broader applications. AI-driven interpretations have transformative potential, revolutionizing cryptococcosis diagnosis, offering standardized, reliable, and efficient POCT results.https://doi.org/10.1186/s43008-024-00158-5CryptococcosisLateral flow assay (LFA)Artificial intelligence (AI)SmartphoneSemiquantitative assayAntigen quantification
spellingShingle David Bermejo-Peláez
Ana Alastruey-Izquierdo
Narda Medina
Daniel Capellán-Martín
Oscar Bonilla
Miguel Luengo-Oroz
Juan Luis Rodríguez-Tudela
Artificial intelligence-driven mobile interpretation of a semi-quantitative cryptococcal antigen lateral flow assay
IMA Fungus
Cryptococcosis
Lateral flow assay (LFA)
Artificial intelligence (AI)
Smartphone
Semiquantitative assay
Antigen quantification
title Artificial intelligence-driven mobile interpretation of a semi-quantitative cryptococcal antigen lateral flow assay
title_full Artificial intelligence-driven mobile interpretation of a semi-quantitative cryptococcal antigen lateral flow assay
title_fullStr Artificial intelligence-driven mobile interpretation of a semi-quantitative cryptococcal antigen lateral flow assay
title_full_unstemmed Artificial intelligence-driven mobile interpretation of a semi-quantitative cryptococcal antigen lateral flow assay
title_short Artificial intelligence-driven mobile interpretation of a semi-quantitative cryptococcal antigen lateral flow assay
title_sort artificial intelligence driven mobile interpretation of a semi quantitative cryptococcal antigen lateral flow assay
topic Cryptococcosis
Lateral flow assay (LFA)
Artificial intelligence (AI)
Smartphone
Semiquantitative assay
Antigen quantification
url https://doi.org/10.1186/s43008-024-00158-5
work_keys_str_mv AT davidbermejopelaez artificialintelligencedrivenmobileinterpretationofasemiquantitativecryptococcalantigenlateralflowassay
AT anaalastrueyizquierdo artificialintelligencedrivenmobileinterpretationofasemiquantitativecryptococcalantigenlateralflowassay
AT nardamedina artificialintelligencedrivenmobileinterpretationofasemiquantitativecryptococcalantigenlateralflowassay
AT danielcapellanmartin artificialintelligencedrivenmobileinterpretationofasemiquantitativecryptococcalantigenlateralflowassay
AT oscarbonilla artificialintelligencedrivenmobileinterpretationofasemiquantitativecryptococcalantigenlateralflowassay
AT miguelluengooroz artificialintelligencedrivenmobileinterpretationofasemiquantitativecryptococcalantigenlateralflowassay
AT juanluisrodrigueztudela artificialintelligencedrivenmobileinterpretationofasemiquantitativecryptococcalantigenlateralflowassay