Role of Benzyladenine Seed Priming on Growth and Physiological and Biochemical Response of Soybean Plants Grown under High Salinity Stress Condition

Salinity is one of the most important abiotic stresses that affect vegetative growth, reproductive yield, biomass distribution, and physiological parameters of many crop plants. A study was conducted to evaluate these parameters in soybean plants (cv. Peking and LS678), following seed priming with b...

Full description

Saved in:
Bibliographic Details
Main Author: Phetole Mangena
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:International Journal of Agronomy
Online Access:http://dx.doi.org/10.1155/2020/8847098
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Salinity is one of the most important abiotic stresses that affect vegetative growth, reproductive yield, biomass distribution, and physiological parameters of many crop plants. A study was conducted to evaluate these parameters in soybean plants (cv. Peking and LS678), following seed priming with benzyladenine (2.16 µM). Soybean plants were subjected to salinity stress imposed by irrigation with a high amount of NaCl (250 mM) solution under greenhouse conditions. Results showed that exogenously applied benzyladenine dramatically improved growth, biomass, and yield parameters as a priming solution compared to hydroprimed plants exposed to similar salt stress conditions. High reduction in mean photosynthetic pigments (0.87–1.88), carbohydrates (24.942–27.091%), phenolic content (2.28–2.33), flavonoids (2.37–2.11), and antioxidant capacity (34.5–37.2%) was observed in plants developed from hydroprimed seeds under salt conditions. These findings suggest that priming of seeds with 2.16 µM benzyladenine improved the vegetative, reproductive, and physiological responses of soybeans under induced salinity stress.
ISSN:1687-8159
1687-8167