Exact Solutions for the Wick-Type Stochastic Schamel-Korteweg-de Vries Equation
We consider the Wick-type stochastic Schamel-Korteweg-de Vries equation with variable coefficients in this paper. With the aid of symbolic computation and Hermite transformation, by employing the (G′/G,1/G)-expansion method, we derive the new exact travelling wave solutions, which include hyperbolic...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2017/4647838 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832560719066824704 |
---|---|
author | Xueqin Wang Yadong Shang Huahui Di |
author_facet | Xueqin Wang Yadong Shang Huahui Di |
author_sort | Xueqin Wang |
collection | DOAJ |
description | We consider the Wick-type stochastic Schamel-Korteweg-de Vries equation with variable coefficients in this paper. With the aid of symbolic computation and Hermite transformation, by employing the (G′/G,1/G)-expansion method, we derive the new exact travelling wave solutions, which include hyperbolic and trigonometric solutions for the considered equations. |
format | Article |
id | doaj-art-2075577610494a40b83083fa8206d21e |
institution | Kabale University |
issn | 1687-9120 1687-9139 |
language | English |
publishDate | 2017-01-01 |
publisher | Wiley |
record_format | Article |
series | Advances in Mathematical Physics |
spelling | doaj-art-2075577610494a40b83083fa8206d21e2025-02-03T01:26:51ZengWileyAdvances in Mathematical Physics1687-91201687-91392017-01-01201710.1155/2017/46478384647838Exact Solutions for the Wick-Type Stochastic Schamel-Korteweg-de Vries EquationXueqin Wang0Yadong Shang1Huahui Di2School of Mathematics and Information Science, Guangzhou University, Guangzhou, Guangdong 510006, ChinaSchool of Mathematics and Information Science, Guangzhou University, Guangzhou, Guangdong 510006, ChinaSchool of Mathematics and Information Science, Guangzhou University, Guangzhou, Guangdong 510006, ChinaWe consider the Wick-type stochastic Schamel-Korteweg-de Vries equation with variable coefficients in this paper. With the aid of symbolic computation and Hermite transformation, by employing the (G′/G,1/G)-expansion method, we derive the new exact travelling wave solutions, which include hyperbolic and trigonometric solutions for the considered equations.http://dx.doi.org/10.1155/2017/4647838 |
spellingShingle | Xueqin Wang Yadong Shang Huahui Di Exact Solutions for the Wick-Type Stochastic Schamel-Korteweg-de Vries Equation Advances in Mathematical Physics |
title | Exact Solutions for the Wick-Type Stochastic Schamel-Korteweg-de Vries Equation |
title_full | Exact Solutions for the Wick-Type Stochastic Schamel-Korteweg-de Vries Equation |
title_fullStr | Exact Solutions for the Wick-Type Stochastic Schamel-Korteweg-de Vries Equation |
title_full_unstemmed | Exact Solutions for the Wick-Type Stochastic Schamel-Korteweg-de Vries Equation |
title_short | Exact Solutions for the Wick-Type Stochastic Schamel-Korteweg-de Vries Equation |
title_sort | exact solutions for the wick type stochastic schamel korteweg de vries equation |
url | http://dx.doi.org/10.1155/2017/4647838 |
work_keys_str_mv | AT xueqinwang exactsolutionsforthewicktypestochasticschamelkortewegdevriesequation AT yadongshang exactsolutionsforthewicktypestochasticschamelkortewegdevriesequation AT huahuidi exactsolutionsforthewicktypestochasticschamelkortewegdevriesequation |