Exact Solutions for the Wick-Type Stochastic Schamel-Korteweg-de Vries Equation

We consider the Wick-type stochastic Schamel-Korteweg-de Vries equation with variable coefficients in this paper. With the aid of symbolic computation and Hermite transformation, by employing the (G′/G,1/G)-expansion method, we derive the new exact travelling wave solutions, which include hyperbolic...

Full description

Saved in:
Bibliographic Details
Main Authors: Xueqin Wang, Yadong Shang, Huahui Di
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2017/4647838
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832560719066824704
author Xueqin Wang
Yadong Shang
Huahui Di
author_facet Xueqin Wang
Yadong Shang
Huahui Di
author_sort Xueqin Wang
collection DOAJ
description We consider the Wick-type stochastic Schamel-Korteweg-de Vries equation with variable coefficients in this paper. With the aid of symbolic computation and Hermite transformation, by employing the (G′/G,1/G)-expansion method, we derive the new exact travelling wave solutions, which include hyperbolic and trigonometric solutions for the considered equations.
format Article
id doaj-art-2075577610494a40b83083fa8206d21e
institution Kabale University
issn 1687-9120
1687-9139
language English
publishDate 2017-01-01
publisher Wiley
record_format Article
series Advances in Mathematical Physics
spelling doaj-art-2075577610494a40b83083fa8206d21e2025-02-03T01:26:51ZengWileyAdvances in Mathematical Physics1687-91201687-91392017-01-01201710.1155/2017/46478384647838Exact Solutions for the Wick-Type Stochastic Schamel-Korteweg-de Vries EquationXueqin Wang0Yadong Shang1Huahui Di2School of Mathematics and Information Science, Guangzhou University, Guangzhou, Guangdong 510006, ChinaSchool of Mathematics and Information Science, Guangzhou University, Guangzhou, Guangdong 510006, ChinaSchool of Mathematics and Information Science, Guangzhou University, Guangzhou, Guangdong 510006, ChinaWe consider the Wick-type stochastic Schamel-Korteweg-de Vries equation with variable coefficients in this paper. With the aid of symbolic computation and Hermite transformation, by employing the (G′/G,1/G)-expansion method, we derive the new exact travelling wave solutions, which include hyperbolic and trigonometric solutions for the considered equations.http://dx.doi.org/10.1155/2017/4647838
spellingShingle Xueqin Wang
Yadong Shang
Huahui Di
Exact Solutions for the Wick-Type Stochastic Schamel-Korteweg-de Vries Equation
Advances in Mathematical Physics
title Exact Solutions for the Wick-Type Stochastic Schamel-Korteweg-de Vries Equation
title_full Exact Solutions for the Wick-Type Stochastic Schamel-Korteweg-de Vries Equation
title_fullStr Exact Solutions for the Wick-Type Stochastic Schamel-Korteweg-de Vries Equation
title_full_unstemmed Exact Solutions for the Wick-Type Stochastic Schamel-Korteweg-de Vries Equation
title_short Exact Solutions for the Wick-Type Stochastic Schamel-Korteweg-de Vries Equation
title_sort exact solutions for the wick type stochastic schamel korteweg de vries equation
url http://dx.doi.org/10.1155/2017/4647838
work_keys_str_mv AT xueqinwang exactsolutionsforthewicktypestochasticschamelkortewegdevriesequation
AT yadongshang exactsolutionsforthewicktypestochasticschamelkortewegdevriesequation
AT huahuidi exactsolutionsforthewicktypestochasticschamelkortewegdevriesequation