A Bicomplex Proportional Fractional (<i>ϑ</i>,<i>φ</i>)-Weighted Cauchy–Riemann Operator Using Riemann–Liouville Derivatives with Respect to an Hyperbolic-Valued Function

Based on the Riemann–Liouville derivatives with respect to functions taking values in the set of hyperbolic numbers, we consider a new bicomplex proportional fractional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics>...

Full description

Saved in:
Bibliographic Details
Main Authors: José Oscar González-Cervantes, Juan Bory-Reyes, Juan Adrián Ramírez-Belman
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/1/1
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588396599443456
author José Oscar González-Cervantes
Juan Bory-Reyes
Juan Adrián Ramírez-Belman
author_facet José Oscar González-Cervantes
Juan Bory-Reyes
Juan Adrián Ramírez-Belman
author_sort José Oscar González-Cervantes
collection DOAJ
description Based on the Riemann–Liouville derivatives with respect to functions taking values in the set of hyperbolic numbers, we consider a new bicomplex proportional fractional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>ϑ</mi><mo>,</mo><mi>φ</mi><mo>)</mo></mrow></semantics></math></inline-formula>-weighted Cauchy–Riemann operator, involving orthogonal bicomplex functions as weights, and its associated fractional Borel–Pompeiu formula is proved as the main result.
format Article
id doaj-art-203da4dea695439689eead0b7451a6b4
institution Kabale University
issn 2504-3110
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj-art-203da4dea695439689eead0b7451a6b42025-01-24T13:33:19ZengMDPI AGFractal and Fractional2504-31102024-12-0191110.3390/fractalfract9010001A Bicomplex Proportional Fractional (<i>ϑ</i>,<i>φ</i>)-Weighted Cauchy–Riemann Operator Using Riemann–Liouville Derivatives with Respect to an Hyperbolic-Valued FunctionJosé Oscar González-Cervantes0Juan Bory-Reyes1Juan Adrián Ramírez-Belman2Departamento de Matemáticas, ESFM-Instituto Politécnico Nacional, Ciudad México 07338, MexicoSEPI, ESIME-Zacatenco-Instituto Politécnico Nacional, Ciudad México 07338, MexicoSEPI, ESFM-Instituto Politécnico Nacional, Ciudad México 07338, MexicoBased on the Riemann–Liouville derivatives with respect to functions taking values in the set of hyperbolic numbers, we consider a new bicomplex proportional fractional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>ϑ</mi><mo>,</mo><mi>φ</mi><mo>)</mo></mrow></semantics></math></inline-formula>-weighted Cauchy–Riemann operator, involving orthogonal bicomplex functions as weights, and its associated fractional Borel–Pompeiu formula is proved as the main result.https://www.mdpi.com/2504-3110/9/1/1bicomplex analysisproportional fractional integralsderivatives with respect to another functionRiemann–Liouville derivativesCauchy–Riemann operatorBorel–Pompeiu formula
spellingShingle José Oscar González-Cervantes
Juan Bory-Reyes
Juan Adrián Ramírez-Belman
A Bicomplex Proportional Fractional (<i>ϑ</i>,<i>φ</i>)-Weighted Cauchy–Riemann Operator Using Riemann–Liouville Derivatives with Respect to an Hyperbolic-Valued Function
Fractal and Fractional
bicomplex analysis
proportional fractional integrals
derivatives with respect to another function
Riemann–Liouville derivatives
Cauchy–Riemann operator
Borel–Pompeiu formula
title A Bicomplex Proportional Fractional (<i>ϑ</i>,<i>φ</i>)-Weighted Cauchy–Riemann Operator Using Riemann–Liouville Derivatives with Respect to an Hyperbolic-Valued Function
title_full A Bicomplex Proportional Fractional (<i>ϑ</i>,<i>φ</i>)-Weighted Cauchy–Riemann Operator Using Riemann–Liouville Derivatives with Respect to an Hyperbolic-Valued Function
title_fullStr A Bicomplex Proportional Fractional (<i>ϑ</i>,<i>φ</i>)-Weighted Cauchy–Riemann Operator Using Riemann–Liouville Derivatives with Respect to an Hyperbolic-Valued Function
title_full_unstemmed A Bicomplex Proportional Fractional (<i>ϑ</i>,<i>φ</i>)-Weighted Cauchy–Riemann Operator Using Riemann–Liouville Derivatives with Respect to an Hyperbolic-Valued Function
title_short A Bicomplex Proportional Fractional (<i>ϑ</i>,<i>φ</i>)-Weighted Cauchy–Riemann Operator Using Riemann–Liouville Derivatives with Respect to an Hyperbolic-Valued Function
title_sort bicomplex proportional fractional i ϑ i i φ i weighted cauchy riemann operator using riemann liouville derivatives with respect to an hyperbolic valued function
topic bicomplex analysis
proportional fractional integrals
derivatives with respect to another function
Riemann–Liouville derivatives
Cauchy–Riemann operator
Borel–Pompeiu formula
url https://www.mdpi.com/2504-3110/9/1/1
work_keys_str_mv AT joseoscargonzalezcervantes abicomplexproportionalfractionalithiiphiweightedcauchyriemannoperatorusingriemannliouvillederivativeswithrespecttoanhyperbolicvaluedfunction
AT juanboryreyes abicomplexproportionalfractionalithiiphiweightedcauchyriemannoperatorusingriemannliouvillederivativeswithrespecttoanhyperbolicvaluedfunction
AT juanadrianramirezbelman abicomplexproportionalfractionalithiiphiweightedcauchyriemannoperatorusingriemannliouvillederivativeswithrespecttoanhyperbolicvaluedfunction
AT joseoscargonzalezcervantes bicomplexproportionalfractionalithiiphiweightedcauchyriemannoperatorusingriemannliouvillederivativeswithrespecttoanhyperbolicvaluedfunction
AT juanboryreyes bicomplexproportionalfractionalithiiphiweightedcauchyriemannoperatorusingriemannliouvillederivativeswithrespecttoanhyperbolicvaluedfunction
AT juanadrianramirezbelman bicomplexproportionalfractionalithiiphiweightedcauchyriemannoperatorusingriemannliouvillederivativeswithrespecttoanhyperbolicvaluedfunction