Comparative Study of Metaheuristics for the Curve-Fitting Problem: Modeling Neurotransmitter Diffusion and Synaptic Receptor Activation
Synapses are key elements in the information transmission in the nervous system. Among the different approaches to study them, the use of computational simulations is identified as the most promising technique. Simulations, however, do not provide generalized models of the underlying biochemical ph...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2015-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2015/708131 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832552550817071104 |
---|---|
author | Jesús Montes Antonio LaTorre Santiago Muelas Ángel Merchán-Pérez José M. Peña |
author_facet | Jesús Montes Antonio LaTorre Santiago Muelas Ángel Merchán-Pérez José M. Peña |
author_sort | Jesús Montes |
collection | DOAJ |
description | Synapses are key elements in the information transmission in the nervous system. Among the different approaches to study them, the use of computational simulations is identified as the most promising technique.
Simulations, however, do not provide generalized models of the underlying biochemical phenomena, but a set of observations, or time-series curves, displaying the behavior of the synapse in the scenario represented. Finding a general model of these curves, like a set of mathematical equations, could be an achievement in the study of synaptic behavior. In this paper, we propose an exploratory analysis in which selected curve models are proposed, and state-of-the-art metaheuristics are used and compared to fit the free coefficients of these curves to the data obtained from simulations. Experimental results demonstrate that several models can fit these
data, though a deeper analysis from a biological perspective reveals that some are better suited for this purpose, as they represent more accurately the biological process. Based on the results of this analysis, we propose a set of mathematical equations and a methodology, adequate for modeling several aspects of biochemical synaptic behavior. |
format | Article |
id | doaj-art-1f68692bad7a4d75835da141bde343cf |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2015-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-1f68692bad7a4d75835da141bde343cf2025-02-03T05:58:23ZengWileyAbstract and Applied Analysis1085-33751687-04092015-01-01201510.1155/2015/708131708131Comparative Study of Metaheuristics for the Curve-Fitting Problem: Modeling Neurotransmitter Diffusion and Synaptic Receptor ActivationJesús Montes0Antonio LaTorre1Santiago Muelas2Ángel Merchán-Pérez3José M. Peña4DATSI, ETS de Ingenieros Informáticos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28660 Boadilla del Monte, Madrid, SpainDATSI, ETS de Ingenieros Informáticos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28660 Boadilla del Monte, Madrid, SpainDATSI, ETS de Ingenieros Informáticos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28660 Boadilla del Monte, Madrid, SpainDATSI, ETS de Ingenieros Informáticos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28660 Boadilla del Monte, Madrid, SpainDATSI, ETS de Ingenieros Informáticos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28660 Boadilla del Monte, Madrid, SpainSynapses are key elements in the information transmission in the nervous system. Among the different approaches to study them, the use of computational simulations is identified as the most promising technique. Simulations, however, do not provide generalized models of the underlying biochemical phenomena, but a set of observations, or time-series curves, displaying the behavior of the synapse in the scenario represented. Finding a general model of these curves, like a set of mathematical equations, could be an achievement in the study of synaptic behavior. In this paper, we propose an exploratory analysis in which selected curve models are proposed, and state-of-the-art metaheuristics are used and compared to fit the free coefficients of these curves to the data obtained from simulations. Experimental results demonstrate that several models can fit these data, though a deeper analysis from a biological perspective reveals that some are better suited for this purpose, as they represent more accurately the biological process. Based on the results of this analysis, we propose a set of mathematical equations and a methodology, adequate for modeling several aspects of biochemical synaptic behavior.http://dx.doi.org/10.1155/2015/708131 |
spellingShingle | Jesús Montes Antonio LaTorre Santiago Muelas Ángel Merchán-Pérez José M. Peña Comparative Study of Metaheuristics for the Curve-Fitting Problem: Modeling Neurotransmitter Diffusion and Synaptic Receptor Activation Abstract and Applied Analysis |
title | Comparative Study of Metaheuristics for the Curve-Fitting Problem: Modeling Neurotransmitter Diffusion and Synaptic Receptor Activation |
title_full | Comparative Study of Metaheuristics for the Curve-Fitting Problem: Modeling Neurotransmitter Diffusion and Synaptic Receptor Activation |
title_fullStr | Comparative Study of Metaheuristics for the Curve-Fitting Problem: Modeling Neurotransmitter Diffusion and Synaptic Receptor Activation |
title_full_unstemmed | Comparative Study of Metaheuristics for the Curve-Fitting Problem: Modeling Neurotransmitter Diffusion and Synaptic Receptor Activation |
title_short | Comparative Study of Metaheuristics for the Curve-Fitting Problem: Modeling Neurotransmitter Diffusion and Synaptic Receptor Activation |
title_sort | comparative study of metaheuristics for the curve fitting problem modeling neurotransmitter diffusion and synaptic receptor activation |
url | http://dx.doi.org/10.1155/2015/708131 |
work_keys_str_mv | AT jesusmontes comparativestudyofmetaheuristicsforthecurvefittingproblemmodelingneurotransmitterdiffusionandsynapticreceptoractivation AT antoniolatorre comparativestudyofmetaheuristicsforthecurvefittingproblemmodelingneurotransmitterdiffusionandsynapticreceptoractivation AT santiagomuelas comparativestudyofmetaheuristicsforthecurvefittingproblemmodelingneurotransmitterdiffusionandsynapticreceptoractivation AT angelmerchanperez comparativestudyofmetaheuristicsforthecurvefittingproblemmodelingneurotransmitterdiffusionandsynapticreceptoractivation AT josempena comparativestudyofmetaheuristicsforthecurvefittingproblemmodelingneurotransmitterdiffusionandsynapticreceptoractivation |