Influence of Non-Uniform Airflow on Two-Phase Parallel-Flow Heat Exchanger in Data Cabinet Cooling System

The energy consumption of data center cooling systems is rapidly increasing, necessitating urgent improvements in cooling system performance. This study investigates a pump-driven two-phase cooling system (PTCS) utilizing a parallel-flow heat exchanger (PFHE) as an evaporator, positioned at the rear...

Full description

Saved in:
Bibliographic Details
Main Authors: Hao Cheng, Tongzhi Yang, Quan Cheng, Yifan Zhao, Leixin Wang, Weixing Yuan
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/4/923
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The energy consumption of data center cooling systems is rapidly increasing, necessitating urgent improvements in cooling system performance. This study investigates a pump-driven two-phase cooling system (PTCS) utilizing a parallel-flow heat exchanger (PFHE) as an evaporator, positioned at the rear of server cabinets. The findings indicate that enhancing the vapor quality at the PFHE outlet improves the overall cooling performance. However, airflow non-uniformity induces premature localized overheating, restricting further increases in vapor quality. For PFHEs operating with a two-phase outlet condition, inlet air temperature non-uniformity has a relatively minor impact on the cooling capacity but significantly affects the drop in pressure. Specifically, higher upstream air temperatures increase the pressure drop by 7%, whereas higher downstream air temperatures reduce it by 7.7%. The implementation of multi-pass configurations effectively mitigates localized overheating caused by airflow non-uniformity, suppresses the decline in cooling capacity, and enhances the operational vapor quality of the cooling system.
ISSN:1996-1073