Leveraging Explainable Artificial Intelligence in Solar Photovoltaic Mappings: Model Explanations and Feature Selection
This work explores the effectiveness of explainable artificial intelligence in mapping solar photovoltaic power outputs based on weather data, focusing on short-term mappings. We analyzed the impact values provided by the Shapley additive explanation method when applied to two algorithms designed fo...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/5/1282 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!