Fermionic tensor network contraction for arbitrary geometries
We describe our implementation of fermionic tensor network contraction on arbitrary lattices within both a globally ordered and a locally ordered formalism. We provide a pedagogical description of these two conventions as implemented for the quimb library. Using hyperoptimized approximate contractio...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
American Physical Society
2025-05-01
|
| Series: | Physical Review Research |
| Online Access: | http://doi.org/10.1103/PhysRevResearch.7.023193 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849719745585086464 |
|---|---|
| author | Yang Gao Huanchen Zhai Johnnie Gray Ruojing Peng Gunhee Park Wen-Yuan Liu Eirik F. Kjønstad Garnet Kin-Lic Chan |
| author_facet | Yang Gao Huanchen Zhai Johnnie Gray Ruojing Peng Gunhee Park Wen-Yuan Liu Eirik F. Kjønstad Garnet Kin-Lic Chan |
| author_sort | Yang Gao |
| collection | DOAJ |
| description | We describe our implementation of fermionic tensor network contraction on arbitrary lattices within both a globally ordered and a locally ordered formalism. We provide a pedagogical description of these two conventions as implemented for the quimb library. Using hyperoptimized approximate contraction strategies, we present benchmark fermionic projected entangled pair state simulations of finite Hubbard models defined on the three-dimensional diamond lattice and random regular graphs. |
| format | Article |
| id | doaj-art-1ec2b7d936a34f72a8905db8dd7b58a8 |
| institution | DOAJ |
| issn | 2643-1564 |
| language | English |
| publishDate | 2025-05-01 |
| publisher | American Physical Society |
| record_format | Article |
| series | Physical Review Research |
| spelling | doaj-art-1ec2b7d936a34f72a8905db8dd7b58a82025-08-20T03:12:05ZengAmerican Physical SocietyPhysical Review Research2643-15642025-05-017202319310.1103/PhysRevResearch.7.023193Fermionic tensor network contraction for arbitrary geometriesYang GaoHuanchen ZhaiJohnnie GrayRuojing PengGunhee ParkWen-Yuan LiuEirik F. KjønstadGarnet Kin-Lic ChanWe describe our implementation of fermionic tensor network contraction on arbitrary lattices within both a globally ordered and a locally ordered formalism. We provide a pedagogical description of these two conventions as implemented for the quimb library. Using hyperoptimized approximate contraction strategies, we present benchmark fermionic projected entangled pair state simulations of finite Hubbard models defined on the three-dimensional diamond lattice and random regular graphs.http://doi.org/10.1103/PhysRevResearch.7.023193 |
| spellingShingle | Yang Gao Huanchen Zhai Johnnie Gray Ruojing Peng Gunhee Park Wen-Yuan Liu Eirik F. Kjønstad Garnet Kin-Lic Chan Fermionic tensor network contraction for arbitrary geometries Physical Review Research |
| title | Fermionic tensor network contraction for arbitrary geometries |
| title_full | Fermionic tensor network contraction for arbitrary geometries |
| title_fullStr | Fermionic tensor network contraction for arbitrary geometries |
| title_full_unstemmed | Fermionic tensor network contraction for arbitrary geometries |
| title_short | Fermionic tensor network contraction for arbitrary geometries |
| title_sort | fermionic tensor network contraction for arbitrary geometries |
| url | http://doi.org/10.1103/PhysRevResearch.7.023193 |
| work_keys_str_mv | AT yanggao fermionictensornetworkcontractionforarbitrarygeometries AT huanchenzhai fermionictensornetworkcontractionforarbitrarygeometries AT johnniegray fermionictensornetworkcontractionforarbitrarygeometries AT ruojingpeng fermionictensornetworkcontractionforarbitrarygeometries AT gunheepark fermionictensornetworkcontractionforarbitrarygeometries AT wenyuanliu fermionictensornetworkcontractionforarbitrarygeometries AT eirikfkjønstad fermionictensornetworkcontractionforarbitrarygeometries AT garnetkinlicchan fermionictensornetworkcontractionforarbitrarygeometries |