Fermionic tensor network contraction for arbitrary geometries

We describe our implementation of fermionic tensor network contraction on arbitrary lattices within both a globally ordered and a locally ordered formalism. We provide a pedagogical description of these two conventions as implemented for the quimb library. Using hyperoptimized approximate contractio...

Full description

Saved in:
Bibliographic Details
Main Authors: Yang Gao, Huanchen Zhai, Johnnie Gray, Ruojing Peng, Gunhee Park, Wen-Yuan Liu, Eirik F. Kjønstad, Garnet Kin-Lic Chan
Format: Article
Language:English
Published: American Physical Society 2025-05-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.7.023193
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849719745585086464
author Yang Gao
Huanchen Zhai
Johnnie Gray
Ruojing Peng
Gunhee Park
Wen-Yuan Liu
Eirik F. Kjønstad
Garnet Kin-Lic Chan
author_facet Yang Gao
Huanchen Zhai
Johnnie Gray
Ruojing Peng
Gunhee Park
Wen-Yuan Liu
Eirik F. Kjønstad
Garnet Kin-Lic Chan
author_sort Yang Gao
collection DOAJ
description We describe our implementation of fermionic tensor network contraction on arbitrary lattices within both a globally ordered and a locally ordered formalism. We provide a pedagogical description of these two conventions as implemented for the quimb library. Using hyperoptimized approximate contraction strategies, we present benchmark fermionic projected entangled pair state simulations of finite Hubbard models defined on the three-dimensional diamond lattice and random regular graphs.
format Article
id doaj-art-1ec2b7d936a34f72a8905db8dd7b58a8
institution DOAJ
issn 2643-1564
language English
publishDate 2025-05-01
publisher American Physical Society
record_format Article
series Physical Review Research
spelling doaj-art-1ec2b7d936a34f72a8905db8dd7b58a82025-08-20T03:12:05ZengAmerican Physical SocietyPhysical Review Research2643-15642025-05-017202319310.1103/PhysRevResearch.7.023193Fermionic tensor network contraction for arbitrary geometriesYang GaoHuanchen ZhaiJohnnie GrayRuojing PengGunhee ParkWen-Yuan LiuEirik F. KjønstadGarnet Kin-Lic ChanWe describe our implementation of fermionic tensor network contraction on arbitrary lattices within both a globally ordered and a locally ordered formalism. We provide a pedagogical description of these two conventions as implemented for the quimb library. Using hyperoptimized approximate contraction strategies, we present benchmark fermionic projected entangled pair state simulations of finite Hubbard models defined on the three-dimensional diamond lattice and random regular graphs.http://doi.org/10.1103/PhysRevResearch.7.023193
spellingShingle Yang Gao
Huanchen Zhai
Johnnie Gray
Ruojing Peng
Gunhee Park
Wen-Yuan Liu
Eirik F. Kjønstad
Garnet Kin-Lic Chan
Fermionic tensor network contraction for arbitrary geometries
Physical Review Research
title Fermionic tensor network contraction for arbitrary geometries
title_full Fermionic tensor network contraction for arbitrary geometries
title_fullStr Fermionic tensor network contraction for arbitrary geometries
title_full_unstemmed Fermionic tensor network contraction for arbitrary geometries
title_short Fermionic tensor network contraction for arbitrary geometries
title_sort fermionic tensor network contraction for arbitrary geometries
url http://doi.org/10.1103/PhysRevResearch.7.023193
work_keys_str_mv AT yanggao fermionictensornetworkcontractionforarbitrarygeometries
AT huanchenzhai fermionictensornetworkcontractionforarbitrarygeometries
AT johnniegray fermionictensornetworkcontractionforarbitrarygeometries
AT ruojingpeng fermionictensornetworkcontractionforarbitrarygeometries
AT gunheepark fermionictensornetworkcontractionforarbitrarygeometries
AT wenyuanliu fermionictensornetworkcontractionforarbitrarygeometries
AT eirikfkjønstad fermionictensornetworkcontractionforarbitrarygeometries
AT garnetkinlicchan fermionictensornetworkcontractionforarbitrarygeometries