On the Normalized Laplacian Spectrum of the Zero-Divisor Graph of the Commutative Ring <inline-formula><math display="inline"><semantics><msub><mstyle mathvariant="bold"><mi mathvariant="double-struck">Z</mi></mstyle><mrow><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">1</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">1</mn></msub></msubsup><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">2</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">2</mn></msub></msubsup></mrow></msub></semantics></math></inline-formula>

The zero-divisor graph of a commutative ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">R</mi></semantics></math></inline-formula> with a nonzero...

Full description

Saved in:
Bibliographic Details
Main Authors: Ali Al Khabyah, Nazim, Nadeem Ur Rehman
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/1/37
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589099200937984
author Ali Al Khabyah
Nazim
Nadeem Ur Rehman
author_facet Ali Al Khabyah
Nazim
Nadeem Ur Rehman
author_sort Ali Al Khabyah
collection DOAJ
description The zero-divisor graph of a commutative ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">R</mi></semantics></math></inline-formula> with a nonzero identity, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>(</mo><mi mathvariant="fraktur">R</mi><mo>)</mo></mrow></semantics></math></inline-formula>, is an undirected graph where the vertex set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><msup><mrow><mo>(</mo><mi mathvariant="fraktur">R</mi><mo>)</mo></mrow><mo>*</mo></msup></mrow></semantics></math></inline-formula> consists of all nonzero zero-divisors of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">R</mi></semantics></math></inline-formula>. Two distinct vertices <i>a</i> and <i>b</i> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>(</mo><mi mathvariant="fraktur">R</mi><mo>)</mo></mrow></semantics></math></inline-formula> are adjacent if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mi>b</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>. The normalized Laplacian spectrum of zero-divisor graphs has been studied extensively due to its algebraic and combinatorial significance. Notably, Pirzada and his co-authors computed the normalized Laplacian spectrum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mi mathvariant="fraktur">n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> for specific values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">n</mi></semantics></math></inline-formula> in the set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mi>p</mi><mi>q</mi><mo>,</mo><msup><mi>p</mi><mn>2</mn></msup><mi>q</mi><mo>,</mo><msup><mi>p</mi><mn>3</mn></msup><mo>,</mo><msup><mi>p</mi><mn>4</mn></msup><mo>}</mo></mrow></semantics></math></inline-formula>, where <i>p</i> and <i>q</i> are distinct primes satisfying <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo><</mo><mi>q</mi></mrow></semantics></math></inline-formula>. Motivated by their work, this article investigates the normalized Laplacian spectrum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mi mathvariant="fraktur">n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> for a more general class of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">n</mi></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">n</mi></semantics></math></inline-formula> is represented as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>p</mi><mn>1</mn><msub><mi>T</mi><mn>1</mn></msub></msubsup><msubsup><mi>p</mi><mn>2</mn><msub><mi>T</mi><mn>2</mn></msub></msubsup></mrow></semantics></math></inline-formula>, with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>p</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>p</mi><mn>2</mn></msub></semantics></math></inline-formula> being distinct primes <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>p</mi><mn>1</mn></msub><mo><</mo><msub><mi>p</mi><mn>2</mn></msub><mo>)</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mn>1</mn></msub><mo>,</mo><msub><mi>T</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> are positive integers.
format Article
id doaj-art-1e63fda6417244c3881b0c373fc98d0e
institution Kabale University
issn 2075-1680
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-1e63fda6417244c3881b0c373fc98d0e2025-01-24T13:22:13ZengMDPI AGAxioms2075-16802025-01-011413710.3390/axioms14010037On the Normalized Laplacian Spectrum of the Zero-Divisor Graph of the Commutative Ring <inline-formula><math display="inline"><semantics><msub><mstyle mathvariant="bold"><mi mathvariant="double-struck">Z</mi></mstyle><mrow><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">1</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">1</mn></msub></msubsup><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">2</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">2</mn></msub></msubsup></mrow></msub></semantics></math></inline-formula>Ali Al Khabyah0Nazim1Nadeem Ur Rehman2Department of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi ArabiaDepartment of Mathematics, Aligarh Muslim University, Aligarh 202002, IndiaDepartment of Mathematics, Aligarh Muslim University, Aligarh 202002, IndiaThe zero-divisor graph of a commutative ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">R</mi></semantics></math></inline-formula> with a nonzero identity, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>(</mo><mi mathvariant="fraktur">R</mi><mo>)</mo></mrow></semantics></math></inline-formula>, is an undirected graph where the vertex set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><msup><mrow><mo>(</mo><mi mathvariant="fraktur">R</mi><mo>)</mo></mrow><mo>*</mo></msup></mrow></semantics></math></inline-formula> consists of all nonzero zero-divisors of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">R</mi></semantics></math></inline-formula>. Two distinct vertices <i>a</i> and <i>b</i> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>(</mo><mi mathvariant="fraktur">R</mi><mo>)</mo></mrow></semantics></math></inline-formula> are adjacent if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mi>b</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>. The normalized Laplacian spectrum of zero-divisor graphs has been studied extensively due to its algebraic and combinatorial significance. Notably, Pirzada and his co-authors computed the normalized Laplacian spectrum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mi mathvariant="fraktur">n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> for specific values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">n</mi></semantics></math></inline-formula> in the set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mi>p</mi><mi>q</mi><mo>,</mo><msup><mi>p</mi><mn>2</mn></msup><mi>q</mi><mo>,</mo><msup><mi>p</mi><mn>3</mn></msup><mo>,</mo><msup><mi>p</mi><mn>4</mn></msup><mo>}</mo></mrow></semantics></math></inline-formula>, where <i>p</i> and <i>q</i> are distinct primes satisfying <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo><</mo><mi>q</mi></mrow></semantics></math></inline-formula>. Motivated by their work, this article investigates the normalized Laplacian spectrum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mi mathvariant="fraktur">n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> for a more general class of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">n</mi></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">n</mi></semantics></math></inline-formula> is represented as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>p</mi><mn>1</mn><msub><mi>T</mi><mn>1</mn></msub></msubsup><msubsup><mi>p</mi><mn>2</mn><msub><mi>T</mi><mn>2</mn></msub></msubsup></mrow></semantics></math></inline-formula>, with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>p</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>p</mi><mn>2</mn></msub></semantics></math></inline-formula> being distinct primes <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>p</mi><mn>1</mn></msub><mo><</mo><msub><mi>p</mi><mn>2</mn></msub><mo>)</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mn>1</mn></msub><mo>,</mo><msub><mi>T</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> are positive integers.https://www.mdpi.com/2075-1680/14/1/37normalized Laplacian matrixzero-divisor graphnormalized Laplacian spectrumfinite commutative ring
spellingShingle Ali Al Khabyah
Nazim
Nadeem Ur Rehman
On the Normalized Laplacian Spectrum of the Zero-Divisor Graph of the Commutative Ring <inline-formula><math display="inline"><semantics><msub><mstyle mathvariant="bold"><mi mathvariant="double-struck">Z</mi></mstyle><mrow><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">1</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">1</mn></msub></msubsup><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">2</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">2</mn></msub></msubsup></mrow></msub></semantics></math></inline-formula>
Axioms
normalized Laplacian matrix
zero-divisor graph
normalized Laplacian spectrum
finite commutative ring
title On the Normalized Laplacian Spectrum of the Zero-Divisor Graph of the Commutative Ring <inline-formula><math display="inline"><semantics><msub><mstyle mathvariant="bold"><mi mathvariant="double-struck">Z</mi></mstyle><mrow><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">1</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">1</mn></msub></msubsup><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">2</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">2</mn></msub></msubsup></mrow></msub></semantics></math></inline-formula>
title_full On the Normalized Laplacian Spectrum of the Zero-Divisor Graph of the Commutative Ring <inline-formula><math display="inline"><semantics><msub><mstyle mathvariant="bold"><mi mathvariant="double-struck">Z</mi></mstyle><mrow><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">1</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">1</mn></msub></msubsup><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">2</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">2</mn></msub></msubsup></mrow></msub></semantics></math></inline-formula>
title_fullStr On the Normalized Laplacian Spectrum of the Zero-Divisor Graph of the Commutative Ring <inline-formula><math display="inline"><semantics><msub><mstyle mathvariant="bold"><mi mathvariant="double-struck">Z</mi></mstyle><mrow><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">1</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">1</mn></msub></msubsup><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">2</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">2</mn></msub></msubsup></mrow></msub></semantics></math></inline-formula>
title_full_unstemmed On the Normalized Laplacian Spectrum of the Zero-Divisor Graph of the Commutative Ring <inline-formula><math display="inline"><semantics><msub><mstyle mathvariant="bold"><mi mathvariant="double-struck">Z</mi></mstyle><mrow><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">1</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">1</mn></msub></msubsup><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">2</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">2</mn></msub></msubsup></mrow></msub></semantics></math></inline-formula>
title_short On the Normalized Laplacian Spectrum of the Zero-Divisor Graph of the Commutative Ring <inline-formula><math display="inline"><semantics><msub><mstyle mathvariant="bold"><mi mathvariant="double-struck">Z</mi></mstyle><mrow><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">1</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">1</mn></msub></msubsup><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">2</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">2</mn></msub></msubsup></mrow></msub></semantics></math></inline-formula>
title_sort on the normalized laplacian spectrum of the zero divisor graph of the commutative ring inline formula math display inline semantics msub mstyle mathvariant bold mi mathvariant double struck z mi mstyle mrow msubsup mi mathvariant bold italic p mi mn mathvariant bold 1 mn msub mi mathvariant bold italic t mi mn mathvariant bold 1 mn msub msubsup msubsup mi mathvariant bold italic p mi mn mathvariant bold 2 mn msub mi mathvariant bold italic t mi mn mathvariant bold 2 mn msub msubsup mrow msub semantics math inline formula
topic normalized Laplacian matrix
zero-divisor graph
normalized Laplacian spectrum
finite commutative ring
url https://www.mdpi.com/2075-1680/14/1/37
work_keys_str_mv AT alialkhabyah onthenormalizedlaplacianspectrumofthezerodivisorgraphofthecommutativeringinlineformulamathdisplayinlinesemanticsmsubmstylemathvariantboldmimathvariantdoublestruckzmimstylemrowmsubsupmimathvariantbolditalicpmimnmathvariantbold1mnmsubmimathvariantbolditalic
AT nazim onthenormalizedlaplacianspectrumofthezerodivisorgraphofthecommutativeringinlineformulamathdisplayinlinesemanticsmsubmstylemathvariantboldmimathvariantdoublestruckzmimstylemrowmsubsupmimathvariantbolditalicpmimnmathvariantbold1mnmsubmimathvariantbolditalic
AT nadeemurrehman onthenormalizedlaplacianspectrumofthezerodivisorgraphofthecommutativeringinlineformulamathdisplayinlinesemanticsmsubmstylemathvariantboldmimathvariantdoublestruckzmimstylemrowmsubsupmimathvariantbolditalicpmimnmathvariantbold1mnmsubmimathvariantbolditalic