Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects

We analyze a mathematical model of quorum sensing induced biofilm dispersal. It is formulated as a system of non-linear, density-dependent, diffusion-reaction equations. The governing equation for the sessile biomass comprises two non-linear diffusion effects, a degeneracy as in the porous medium eq...

Full description

Saved in:
Bibliographic Details
Main Authors: Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl
Format: Article
Language:English
Published: AIMS Press 2017-05-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2017036
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We analyze a mathematical model of quorum sensing induced biofilm dispersal. It is formulated as a system of non-linear, density-dependent, diffusion-reaction equations. The governing equation for the sessile biomass comprises two non-linear diffusion effects, a degeneracy as in the porous medium equation and fast diffusion. This equation is coupled with three semi-linear diffusion-reaction equations for the concentrations of growth limiting nutrients, autoinducers, and dispersed cells. We prove the existence and uniqueness of bounded non-negative solutions of this system and study the behavior of the model in numerical simulations, where we focus on hollowing effects in established biofilms.
ISSN:1551-0018